2,237 research outputs found

    Simulation of non-linear bearing forces for post-stability investigation

    Get PDF
    Different types of bearing designs were developed to improve dynamic properties of rotor-bearing systems. Elliptical bearings, multisleeve bearings, tilting pad and other designs such as herringbone groove were utilized to increase resistance to the onset of self excited vibrations. Experimental trials are costly, two alternative methods are used to gain a qualitative insight. The first one creates mathematical model and applies both a digital or an analog computer simulation. The second one investigates phenomena occurring on the laboratory rig with the bearing replaced by an electronic simulating device, working in a feedback loop, which produces forces,which are functions of journal displacement and velocity. The simulated hydrodynamic forces are produced according to assumed characteristics matched to the bearing type. The principal benefit of the analog simulation is that nonlinear characteristics of a subsystem are precisely identified and mathematical methods applied for a wide class of problems are checked on the experimental installation

    Mechanisms Regulating the Association of Protein Phosphatase 1 with Spinophilin and Neurabin

    Get PDF
    Protein phosphorylation is a key mediator of signal transduction, allowing for dynamic regulation of substrate activity. Whereas protein kinases obtain substrate specificity by targeting specific amino acid sequences, serine/threonine phosphatase catalytic subunits are much more promiscuous in their ability to dephosphorylate substrates. To obtain substrate specificity, serine/threonine phosphatases utilize targeting proteins to regulate phosphatase subcellular localization and catalytic activity. Spinophilin and its homologue neurabin are two of the most abundant dendritic spine-localized protein phosphatase 1 (PP1) targeting proteins. The association between spinophilin and PP1 is increased in the striatum of animal models of Parkinson's disease (PD). However, mechanisms that regulate the association of spinophilin and neurabin with PP1 are unclear. Here, we report that the association between spinophilin and PP1α or PP1γ1 was increased by CDK5 expression and activation in a heterologous cell system. This increased association is at least partially due to phosphorylation of PP1. Conversely, CDK5 expression and activation decreased the association of PP1 with neurabin. As with dopamine depletion, methamphetamine (METH) abuse causes persistent alterations in dopamine signaling which influence striatal medium spiny neuron function and biochemistry. Moreover, both METH toxicity and dopamine depletion are associated with deficits in motor control and motor learning. Pathologically, we observed a decreased association of spinophilin with PP1 in rat striatum evaluated one month following a binge METH paradigm. Behaviorally, we found that loss of spinophilin recapitulates rotarod pathology previously observed in dopamine-depleted and METH-treated animals. Together, these data have implications in multiple disease states associated with altered dopamine signaling such as PD and psychostimulant drug abuse and delineate a novel mechanism by which PP1 interactions with spinophilin and neurabin may be differentially regulated

    A Metadata description of the data in "A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human.".

    Get PDF
    BACKGROUND: Metabolomics is a rapidly developing functional genomic tool that has a wide range of applications in diverse fields in biology and medicine. However, unlike transcriptomics and proteomics there is currently no central repository for the depositing of data despite efforts by the Metabolomics Standard Initiative (MSI) to develop a standardised description of a metabolomic experiment. FINDINGS: In this manuscript we describe how the MSI description has been applied to a published dataset involving the identification of cross-species metabolic biomarkers associated with type II diabetes. The study describes sample collection of urine from mice, rats and human volunteers, and the subsequent acquisition of data by high resolution 1H NMR spectroscopy. The metadata is described to demonstrate how the MSI descriptions could be applied in a manuscript and the spectra have also been made available for the mouse and rat studies to allow others to process the data. CONCLUSIONS: The intention of this manuscript is to stimulate discussion as to whether the MSI description is sufficient to describe the metadata associated with metabolomic experiments and encourage others to make their data available to other researchers

    Does spinophilin play a role in alteration of NMDAR phosphorylation?

    Get PDF
    poster abstractNormal brain function requires proper organization of downstream signaling pathways. This organization can be modulated by protein phosphorylation. Protein phosphorylation is a balance of phosphatases, such as protein phosphatase 1 (PP1), and kinases such as protein kinase A (PKA) and cyclin dependent kinase 5 (CDK5). Proper targeting of these proteins is critical for their normal function and is perturbed in various disease states. Spinophilin is critical in targeting PP1 to various substrates making it important in regulating the phosphorylation state and thus the function of various proteins including glutamate receptors, such as AMPARs and NMDARs. NMDARs are abundant postsynaptic proteins that are critical for normal synaptic communication. It has been reported that NMDAR phosphorylation modulates channel function. Here we aim to understand if spinophilin regulates NMDAR phosphorylation and function as well as the mechanisms by which the spinophilin NMDAR interaction are altered. Specifically, we have found that the presence of spinophilin decreases the abundance of PP1 bound to NMDAR. This affect was not observed when a PP1 binding-deficient spinophilin mutant (F451A) was expressed. Furthermore, activation of endogenous PKA and/or overexpression of PKA catalytic subunit robustly increased the association between spinophilin and GluN1 and C-terminal tail of the GluN2B subunit of the NMDAR. Conversely, these associations are decreased when CDK5 is present. Our future studies will evaluate the role of spinophilin in regulating the phosphorylation state of the NMDAR. Taken together, our data demonstrate that spinophilin can associate with multiple subunits of the NMDAR in HEK293 cells and that protein kinases can biphasically modulate these associations

    Paper and electronic versions of HM-PRO, a novel patient-reported outcome measure for hematology: an equivalence study.

    Get PDF
    © 2019 Goswami, Oliva, Ionova et al.Aim:To determine measurement equivalence of paper and electronic application of the hematologi-cal malignancy-patient-reported outcome (HM-PRO), a specific measure for the evaluation of patient-reported outcomes in HMs.Patients & methods:Following International Society of Pharmacoeconomicsand Outcomes Research ePRO Good Research Practice Task Force guidelines, a total of 193 adult patientswith different HMs were recruited into a multicenter prospective study. The paper and the electronic ver-sion of the instrument were completed in the outpatient clinics in a randomized crossover design with a30-min time interval to minimize the learning effect. Those who completed the paper version first, com-pleted the electronic version after 30 min and vice versa. Instrument version and order effects were testedon total score of the two parts of the HM-PRO (Part A: quality of life and Part B: signs & symptoms) in atwo-way ANOVA with patients as random effects. Intraclass correlation coefficients (95% CI) and Spear-man’s rank correlation coefficients were used to evaluate test–retest reliability and reproducibility. Theeffects of instrument version and order were tested on total score of the two parts of HM-PRO.Results:The questionnaire version and administration order effects were not significant at the 5% level. Therewere no interactions found between these two factors for HM-PRO (Part A [quality of life]; p=0.95); and(part B [signs and symptoms]; p=0.72]. Spearman’s rank correlation coefficients were greater than 0.9, andintraclass correlation coefficients ranged from 0.94 to 0.98; furthermore, the scores were not statisticallydifferent between the two versions, showing acceptable reliability indexes. Noteworthy, the differencebetween the completion time for both paper (mean=6:38 min) and electronic version (mean=7:29 min)was not statistically significant (n=100; p=0.11). Patients did not report any difficulty in completing theelectronic version during cognitive interviews and were able to understand and respond spontaneously.Conclusion:Measurement equivalence has been demonstrated for the paper and electronic applicationof the HM-PRO.Peer reviewe

    The association of spinophilin with disks large-associated protein 3 (SAPAP3) is regulated by metabotropic glutamate receptor (mGluR) 5

    Get PDF
    Spinophilin is the most abundant protein phosphatase 1 targeting protein in the postsynaptic density of dendritic spines. Spinophilin associates with myriad synaptic proteins to regulate normal synaptic communication; however, the full complement of spinophilin interacting proteins and mechanisms regulating spinophilin interactions are unclear. Here we validate an association between spinophilin and the scaffolding protein, disks large-associated protein 3 (SAP90/PSD-95 associated protein 3; SAPAP3). Loss of SAPAP3 leads to obsessive-compulsive disorder (OCD)-like behaviors due to alterations in metabotropic glutamate receptor (mGluR) signaling. Here we report that spinophilin associates with SAPAP3 in the brain and in a heterologous cell system. Moreover, we have found that expression or activation of group I mGluRs along with activation of the mGluR-dependent kinase, protein kinase C β, enhances this interaction. Functionally, global loss of spinophilin attenuates amphetamine-induced hyperlocomotion, a striatal behavior associated with dopamine dysregulation and OCD. Together, these data delineate a novel link between mGluR signaling, spinophilin, and SAPAP3 in striatal pathophysiology

    EEG correlated functional MRI and postoperative outcome in focal epilepsy

    Get PDF
    Background: The main challenge in assessing patients with epilepsy for resective surgery is localising seizure onset. Frequently, identification of the irritative and seizure onset zones requires invasive EEG. EEG correlated functional MRI (EEG-fMRI) is a novel imaging technique which may provide localising information with regard to these regions. In patients with focal epilepsy, interictal epileptiform discharge (IED) correlated blood oxygen dependent level (BOLD) signal changes were observed in approximately 50% of patients in whom IEDs are recorded. In 70%, these are concordant with expected seizure onset defined by non-invasive electroclinical information. Assessment of clinical validity requires post-surgical outcome studies which have, to date, been limited to case reports of correlation with intracranial EEG. The value of EEG-fMRI was assessed in patients with focal epilepsy who subsequently underwent epilepsy surgery, and IED correlated fMRI signal changes were related to the resection area and clinical outcome. Methods: Simultaneous EEG-fMRI was recorded in 76 patients undergoing presurgical evaluation and the locations of IED correlated preoperative BOLD signal change were compared with the resected area and postoperative outcome. Results: 21 patients had activations with epileptic activity on EEG-fMRI and 10 underwent surgical resection. Seven of 10 patients were seizure free following surgery and the area of maximal BOLD signal change was concordant with resection in six of seven patients. In the remaining three patients, with reduced seizure frequency post-surgically, areas of significant IED correlated BOLD signal change lay outside the resection. 42 of 55 patients who had no IED related activation underwent resection. Conclusion: These results show the potential value of EEG-fMRI in presurgical evaluation

    Resonant Inelastic X-ray Scattering Studies of Elementary Excitations

    Full text link
    In the past decade, Resonant Inelastic X-ray Scattering (RIXS) has made remarkable progress as a spectroscopic technique. This is a direct result of the availability of high-brilliance synchrotron X-ray radiation sources and of advanced photon detection instrumentation. The technique's unique capability to probe elementary excitations in complex materials by measuring their energy-, momentum-, and polarization-dependence has brought RIXS to the forefront of experimental photon science. We review both the experimental and theoretical RIXS investigations of the past decade, focusing on those determining the low-energy charge, spin, orbital and lattice excitations of solids. We present the fundamentals of RIXS as an experimental method and then review the theoretical state of affairs, its recent developments and discuss the different (approximate) methods to compute the dynamical RIXS response. The last decade's body of experimental RIXS data and its interpretation is surveyed, with an emphasis on RIXS studies of correlated electron systems, especially transition metal compounds. Finally, we discuss the promise that RIXS holds for the near future, particularly in view of the advent of x-ray laser photon sources.Comment: Review, 67 pages, 44 figure
    corecore