2,177 research outputs found

    Entanglement and Quantum Phase Transition Revisited

    Full text link
    We show that, for an exactly solvable quantum spin model, a discontinuity in the first derivative of the ground state concurrence appears in the absence of quantum phase transition. It is opposed to the popular belief that the non-analyticity property of entanglement (ground state concurrence) can be used to determine quantum phase transitions. We further point out that the analyticity property of the ground state concurrence in general can be more intricate than that of the ground state energy. Thus there is no one-to-one correspondence between quantum phase transitions and the non-analyticity property of the concurrence. Moreover, we show that the von Neumann entropy, as another measure of entanglement, can not reveal quantum phase transition in the present model. Therefore, in order to link with quantum phase transitions, some other measures of entanglement are needed.Comment: RevTeX 4, 4 pages, 1 EPS figures. some modifications in the text. Submitted to Phys. Rev.

    Influence of a magnetic field on the viscosity of a dilute gas consisting of linear molecules.

    Get PDF
    The viscomagnetic effect for two linear molecules, N2 and CO2, has been calculated in the dilute-gas limit directly from the most accurate ab initio intermolecular potential energy surfaces presently available. The calculations were performed by means of the classical trajectory method in the temperature range from 70 K to 3000 K for N2 and 100 K to 2000 K for CO2, and agreement with the available experimental data is exceptionally good. Above room temperature, where no experimental data are available, the calculations provide the first quantitative information on the magnitude and the behavior of the viscomagnetic effect for these gases. In the presence of a magnetic field, the viscosities of nitrogen and carbon dioxide decrease by at most 0.3% and 0.7%, respectively. The results demonstrate that the viscomagnetic effect is dominated by the contribution of the jj¯ polarization at all temperatures, which shows that the alignment of the rotational axes of the molecules in the presence of a magnetic field is primarily responsible for the viscomagnetic effect

    Ab initio Studies of the Possible Magnetism in BN Sheet by Non-magnetic Impurities and Vacancies

    Full text link
    We performed first-principles calculations to investigate the possible magnetism induced by the different concentrations of non-magnetic impurities and vacancies in BN sheet. The atoms of Be, B, C, N, O, Al and Si are used to replace either B or N in the systems as impurities. We discussed the changes in density of states as well as the extent of the spatial distributions of the defect states, the possible formation of magnetic moments, the magnitude of the magnetization energies and finally the exchange energies due to the presence of these defects. It is shown that the magnetization energies tend to increase as the concentrations of the defects decreases in most of the defect systems which implies a definite preference of finite magnetic moments. The calculated exchange energies are in general tiny but not completely insignificant for two of the studied defect systems, i.e. one with O impurities for N and the other with B vacancies.Comment: 8 pages, 10 figures, submitted to Phys. Rev.

    Venture Capital in Japan: A Financial Instrument Supporting the Innovativeness of the Japanese Economy

    Get PDF
    Two factors: First, the relatively small number of new companies as well as the number of companies subject to liquidation over the year ("firm turnover") in Japan, and second, the insignificant prestige associated with the profession of entrepreneur do not foster growth in the dynamics of this form of financing ventures. The cited indicator for Japan in among the lowest in comparison with other highly developed countries1, while the profession of entrepreneur is not the foremost dream of college graduates. They would much rather prefer realizing their professional careers as members of the government bureaucracy or employees of a major corporation2. However, this mindset is slowly changing, if for no other reason then, in spite of popular conviction, because most small companies are not established during periods of prosperity, but near the end of the downward phase of the economic cycle. That is exactly the phase Japan has been dealing with for several years now. Young, creative people, recruited from the unemployed, are seeking self-employment, using all possible opportunities embedded in the "again starting up" machinery of the economy.Dwa czynniki: pierwszy - stosunkowo mała liczba nowych firm, a także firm likwidowanych w skali roku ("firm turnover") w Japonii oraz drugi - niewielki prestiż, jakim cieszy się zawód przedsiębiorcy, nie sprzyjają dynamizacji omawianej formy finansowania przedsięwzięć. Cytowany wskaźnik, dla Japonii należy do najniższych w porównaniu z innymi krajami wysoko rozwiniętymi (Grabowiecki 2000), zaś profesja przedsiębiorcy nie jest szczytem marzeń ludzi po studiach. Znacznie bardziej chcieliby oni swoją karierę zawodową realizować jako członkowie rządowej biurokracji lub pracownicy dużej korporacji (Corver 2008, s. 2). Ta świadomość ulega jednak stopniowej zmianie, chociażby dlatego, że wbrew popularnym przekonaniom, większość niewielkich przedsiębiorstw, powstaje nie w okresie prosperity, lecz pod koniec spadkowej fazy cyklu koniunkturalnego. Z taką fazą mamy do czynienia w Japonii od paru lat. Młodzi, kreatywni ludzie, rekrutujący się z bezrobotnych, poszukują samozatrudnienia, wykorzystują wszelakie szanse, tkwiące w "ruszającej na powrót" maszynerii gospodark (Yonekura, Lynskey 2003, s. 11)

    Linking entanglement and quantum phase transitions via density functional theory

    Full text link
    Density functional theory (DFT) is shown to provide a novel conceptual and computational framework for entanglement in interacting many-body quantum systems. DFT can, in particular, shed light on the intriguing relationship between quantum phase transitions and entanglement. We use DFT concepts to express entanglement measures in terms of the first or second derivative of the ground state energy. We illustrate the versatility of the DFT approach via a variety of analytically solvable models. As a further application we discuss entanglement and quantum phase transitions in the case of mean field approximations for realistic models of many-body systems.Comment: 6 pages, 2 figure

    Instanton Calculus of Lifshitz Tails

    Get PDF
    For noninteracting particles moving in a Gaussian random potential, there exists a disagreement in the literature on the asymptotic expression for the density of states in the tail of the band. We resolve this discrepancy. Further we illuminate the physical facet of instantons appearing in replica and supersymmetric derivations with another derivation employing a Lagrange multiplier field.Comment: 5 page

    Quasienergy anholonomy and its application to adiabatic quantum state manipulation

    Full text link
    The parametric dependence of a quantum map under the influence of a rank-1 perturbation is investigated. While the Floquet operator of the map and its spectrum have a common period with respect to the perturbation strength λ\lambda, we show an example in which none of the quasienergies nor the eigenvectors obey the same period: After a periodic increment of λ\lambda, the quasienergy arrives at the nearest higher one, instead of the initial one, exhibiting an anholonomy, which governs another anholonomy of the eigenvectors. An application to quantum state manipulations is outlined.Comment: 10pages, 1figure. To be published in Phys. Rev. Lett

    Human Powered Vehicle Frame Design

    Get PDF
    This report discusses the Human Powered Vehicle Frame Design senior project’s contributions to the design, manufacture, testing, and competition of the Cal Poly Human Powered Vehicle Club’s 2015 vehicle, Sweet Phoenix. The project’s guiding rules and timeline were dictated by the ASME Human Powered Vehicle Challenge (HPVC), held in April 2015. The Club sought to improve upon its previous vehicle, Aria, which suffered from a range of faults including a catastrophic structural failure at the 2014 HPVC. Largely in response to this failure, the Frame Design project’s major focus was Sweet Phoenix’s frame, from concept to manufacturing. During the design process in the Spring and Fall of 2014, several other issues were tackled in order to define the frame’s design parameters. These secondary efforts included the fairing shape, vehicle stability requirements, handling characteristics, and rider ergonomics. A handling prototype was constructed in late Fall 2014, which successfully validated the solutions to these secondary requirements before the final design was constructed. Ultimately, Sweet Phoenix’s frame is a hybrid design – a composite monocoque fairing to which several weldments are mechanically fastened. The team used extensive finite element analysis to evaluate structural properties for both of these frame subsystems during the final development stages. Sweet Phoenix was produced during the Winter quarter of 2015, with much physical help from the HPV Club members and financial support from several sponsors. The production effort was quite successful, in part thanks to two significant manufacturing improvements – sponsored out-of-house machining of the fairing tools, and a frame-to-fairing alignment jig. The vehicle’s construction quality was recognized at HPVC with a “Best Craftsmanship” award. Testing of the final vehicle revealed very low stiffness of the weldments’ fairing mounts, which was resolved by adding additional bracing locations to the fairing. In addition, the team discovered several drivetrain-related issues that were attacked with numerous attempted solutions, but were not solved prior to HPVC. The drivetrain also contributed to localized delamination of the fairing near a chain idler pulley mount. Unfortunately, these drivetrain issues resulted in several broken chains and poor performance in the acceleration-heavy Endurance Event at HPVC. On the other hand, Sweet Phoenix placed 1st in Design and Men’s Sprint, both satisfying results for the Club, and the Frame Design project was an overall success
    corecore