63 research outputs found

    AN ULTRASONIC SENSOR FOR HUMAN PRESENCE DETECTION TO ASSIST RESCUE WORK IN LARGE BUILDINGS

    Get PDF
    When the fire brigade arrives at a burning building, it is of vital importance that people who are still inside can quickly be found. Smart buildings should be able to expose this location data to the fire brigade working in a smart city. In this paper the feasibility is researched of using ultrasonic sound sensors for human presence detection in smoke-filled spaces. This type of sensor could assist the fire brigade when evacuating a large building by directing them to the places where their help is most needed. The advantage of ultrasonic sound over other sensors or cameras is that its signal is able to pierce through smoke, does not require badges or other wearable devices and introduces little privacy and security risks. In addition, ultrasonic sensors are very inexpensive making it possible to equip every room of a building with an ultrasonic presence detector. In this research both a preliminary ultrasound measuring device and signal processing algorithm have been designed. Testing results show that the walking movement of a person in an indoor area can be detected with the combination of the sensor and the algorithms. In addition, tests of the signal strength in smoke have shown that ultrasound is capable of “looking through” the smoke. The algorithm based on a particle filter allows for more information to be extracted from the relatively simple sensor signal by detecting human walking movement specifically and opens up the way for an ultrasound based indoor positioning system that can be used in emergency situations

    Lack of Laminar Shear Stress Facilitates the Endothelial Uptake of Very Small Superparamagnetic Iron Oxide Nanoparticles by Modulating the Endothelial Surface Layer

    Get PDF
    Shailey Gale Twamley,1– 3 Niclas Gimber,4 HĂ©ctor Eduardo SĂĄnchez-Ibarra,1,2 Tobias Christaller,1,2 Victoria Isakzai,1,2 Harald Kratz,5 Ronodeep Mitra,6 Lena Kampen,1– 3 Anke Stach,1,2 Heike Heilmann,7 Berit Söhl-Kielczynski,8 Eno Essien Ebong,6,9,10 Jan Schmoranzer,4 Agnieszka MĂŒnster-Wandowski,7,* Antje Ludwig1– 3,* 1Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der CharitĂ©, Berlin, Germany; 2Department of Cardiology, Angiology and Intensive Care Medicine, CharitĂ© – UniversitĂ€tsmedizin Berlin, Corporate Member of Freie UniversitĂ€t Berlin and Humboldt-UniversitĂ€t Zu Berlin, Berlin, Germany; 3DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; 4Advanced Medical Bioimaging Core Facility (AMBIO), UniversitĂ€tsmedizin Berlin, Corporate Member of Freie UniversitĂ€t Berlin, Humboldt-UniversitĂ€t zu Berlin, and Berlin Institute of Health, Berlin, Germany; 5Department of Radiology, CharitĂ© - UniversitĂ€tsmedizin Berlin, Corporate Member of Freie UniversitĂ€t Berlin and Humboldt-UniversitĂ€t zu Berlin, Berlin, Germany; 6Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 7Institute of Integrative Neuroanatomy, CharitĂ© - UniversitĂ€tsmedizin Berlin, Corporate Member of Freie UniversitĂ€t Berlin, Humboldt-UniversitĂ€t zu Berlin, and Berlin Institute of Health, Berlin, Germany; 8Institute for Integrative Neurophysiology, CharitĂ© - UniversitĂ€tsmedizin Berlin, Corporate Member of Freie UniversitĂ€t Berlin, Humboldt-UniversitĂ€t Zu Berlin, and Berlin Institute of Health, Berlin, Germany; 9Department of Bioengineering, Northeastern University, Boston, MA, USA; 10Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA*These authors contributed equally to this workCorrespondence: Shailey Gale Twamley; Antje Ludwig, Tel +49-30-450-528455 ; +49-30-450-513196, Fax +49-30-450-528922 ; +49-30-450941, Email [email protected]; [email protected]: To study whether the absence of laminar shear stress (LSS) enables the uptake of very small superparamagnetic iron oxide nanoparticles (VSOP) in endothelial cells by altering the composition, size, and barrier function of the endothelial surface layer (ESL).Methods and Results: A quantitative particle exclusion assay with living human umbilical endothelial cells using spinning disc confocal microscopy revealed that the dimension of the ESL was reduced in cells cultivated in the absence of LSS. By combining gene expression analysis, flow cytometry, high pressure freezing/freeze substitution immuno-transmission electron microscopy, and confocal laser scanning microscopy, we investigated changes in ESL composition. We found that increased expression of the hyaluronan receptor CD44 by absence of shear stress did not affect the uptake rate of VSOPs. We identified collagen as a previously neglected component of ESL that contributes to its barrier function. Experiments with inhibitor halofuginone and small interfering RNA (siRNA) demonstrated that suppression of collagen expression facilitates VSOP uptake in endothelial cells grown under LSS.Conclusion: The absence of laminar shear stress disturbs the barrier function of the ESL, facilitating membrane accessibility and endocytic uptake of VSOP. Collagen, a previously neglected component of ESL, contributes to its barrier function. Keywords: citrate coated nanoparticles, atherosclerosis, blood flow, endothelial barrier, permeability, internalizatio

    Significance of Input Correlations in Striatal Function

    Get PDF
    The striatum is the main input station of the basal ganglia and is strongly associated with motor and cognitive functions. Anatomical evidence suggests that individual striatal neurons are unlikely to share their inputs from the cortex. Using a biologically realistic large-scale network model of striatum and cortico-striatal projections, we provide a functional interpretation of the special anatomical structure of these projections. Specifically, we show that weak pairwise correlation within the pool of inputs to individual striatal neurons enhances the saliency of signal representation in the striatum. By contrast, correlations among the input pools of different striatal neurons render the signal representation less distinct from background activity. We suggest that for the network architecture of the striatum, there is a preferred cortico-striatal input configuration for optimal signal representation. It is further enhanced by the low-rate asynchronous background activity in striatum, supported by the balance between feedforward and feedback inhibitions in the striatal network. Thus, an appropriate combination of rates and correlations in the striatal input sets the stage for action selection presumably implemented in the basal ganglia

    Simvastatin Sodium Salt and Fluvastatin Interact with Human Gap Junction Gamma-3 Protein

    Get PDF
    Finding pleiomorphic targets for drugs allows new indications or warnings for treatment to be identified. As test of concept, we applied a new chemical genomics approach to uncover additional targets for the widely prescribed lipid-lowering pro-drug simvastatin. We used mRNA extracted from internal mammary artery from patients undergoing coronary artery surgery to prepare a viral cardiovascular protein library, using T7 bacteriophage. We then studied interactions of clones of the bacteriophage, each expressing a different cardiovascular polypeptide, with surface-bound simvastatin in 96-well plates. To maximise likelihood of identifying meaningful interactions between simvastatin and vascular peptides, we used a validated photo-immobilisation method to apply a series of different chemical linkers to bind simvastatin so as to present multiple orientations of its constituent components to potential targets. Three rounds of biopanning identified consistent interaction with the clone expressing part of the gene GJC3, which maps to Homo sapiens chromosome 7, and codes for gap junction gamma-3 protein, also known as connexin 30.2/31.3 (mouse connexin Cx29). Further analysis indicated the binding site to be for the N-terminal domain putatively ‘regulating’ connexin hemichannel and gap junction pores. Using immunohistochemistry we found connexin 30.2/31.3 to be present in samples of artery similar to those used to prepare the bacteriophage library. Surface plasmon resonance revealed that a 25 amino acid synthetic peptide representing the discovered N-terminus did not interact with simvastatin lactone, but did bind to the hydrolysed HMG CoA inhibitor, simvastatin acid. This interaction was also seen for fluvastatin. The gap junction blockers carbenoxolone and flufenamic acid also interacted with the same peptide providing insight into potential site of binding. These findings raise key questions about the functional significance of GJC3 transcripts in the vasculature and other tissues, and this connexin’s role in therapeutic and adverse effects of statins in a range of disease states

    Bernstein von Mises theorems for statistical inverse problems II: Compound Poisson processes

    No full text
    We study nonparametric Bayesian statistical inference for the parameters governing a pure jump process of the form (Formula Presented) where N(t) is a standard Poisson process of intensity λ, and Z k are drawn i.i.d. from jump measure ÎŒ. A high-dimensional wavelet series prior for the LĂ©vy measure Îœ = λΌ is devised and the posterior distribution arises from observing discrete samples Y Δ, Y 2Δ, 
, Y nΔ at fixed observation distance Δ, giving rise to a nonlinear inverse inference problem. We derive contraction rates in uniform norm for the posterior distribution around the true LĂ©vy density that are optimal up to logarithmic factors over Hölder classes, as sample size n increases. We prove a functional Bernstein–von Mises theorem for the distribution functions of both ÎŒ and Îœ, as well as for the intensity λ, establishing the fact that the posterior distribution is approximated by an infinite-dimensional Gaussian measure whose covariance structure is shown to attain the information lower bound for this inverse problem. As a consequence posterior based inferences, such as nonparametric credible sets, are asymptotically valid and optimal from a frequentist point of view. Statistic

    Connexin genes in the mouse and human genome

    No full text
    Gap junctions serve for direct intercellular communication by docking of two hemichannels in adjacent cells thereby forming conduits between the cytoplasmic compartments of adjacent cells. Connexin genes code for subunit proteins of gap junction channels and are members of large gene families in mammals. So far, 17 connexin (Cx) genes have been described and characterized in the murine genome. For most of them, orthologues in the human genome have been found (see White and Paul 1999; Manthey et al. 1999; Teubner et al. 2001; Söhl et al. 2001). We have recently performed searches for connexin genes in murine and human gene libraries available at EMBL/Heidelberg, NCBI and the Celera company that have increased the number of identified connexins to 19 in mouse and 20 in humans. For one mouse connexin gene and two human connexin genes we did not find orthologues in the other genome. Here we present a short overview on distinct connexin genes which we found in the mouse and human genome and which may include all members of this gene family, if no further connexin gene will be discovered in the remaining non-sequenced parts (about 1-5%) of the genomes

    An Ultrasonic Sensor for Human Presence Detection to Assist Rescue Work in Large Buildings

    Get PDF
    When the fire brigade arrives at a burning building, it is of vital importance that people who are still inside can quickly be found. Smart buildings should be able to expose this location data to the fire brigade working in a smart city. In this paper the feasibility is researched of using ultrasonic sound sensors for human presence detection in smoke-filled spaces. This type of sensor could assist the fire brigade when evacuating a large building by directing them to the places where their help is most needed. The advantage of ultrasonic sound over other sensors or cameras is that its signal is able to pierce through smoke, does not require badges or other wearable devices and introduces little privacy and security risks. In addition, ultrasonic sensors are very inexpensive making it possible to equip every room of a building with an ultrasonic presence detector. In this research both a preliminary ultrasound measuring device and signal processing algorithm have been designed. Testing results show that the walking movement of a person in an indoor area can be detected with the combination of the sensor and the algorithms. In addition, tests of the signal strength in smoke have shown that ultrasound is capable of “looking through” the smoke. The algorithm based on a particle filter allows for more information to be extracted from the relatively simple sensor signal by detecting human walking movement specifically and opens up the way for an ultrasound based indoor positioning system that can be used in emergency situations.Microwave Sensing, Signals & SystemsStatisticsOLD Department of GIS TechnologyOLD Urban Desig

    Three-dinemsional reconstruction of a calyx of Held and its portsynaptic principal neuron in the medial nucleus of the trapezoid body

    No full text
    The three-dimensional morphology of the axosomatic synaptic structures between a calyx of Held and a principal neuron in the medial nucleus of the trapezoid body (MNTB) in the brainstem of young postnatal day 9 rats was reconstructed from serial ultrathin sections. In the apposition zone between the calyx and the principal neuron two types of membrane specializations were identified: synaptic contacts (SCs) with active zones (AZs) and their associated postsynaptic densities (PSDs) constituted ∌35% (n = 554) of the specializations; the remaining 65% (n = 1010) were puncta adherentia (PA). Synaptic contacts comprised ∌5% of the apposition area of presynaptic and postsynaptic membranes. A SC had an average area of 0.100 ÎŒm2, and the nearest neighbors were separated, on average, by 0.59 ÎŒm. Approximately one-half of the synaptic vesicles in the calyx were clustered within a distance of 200 nm of the AZ membrane area, a cluster consisting of ∌60 synaptic vesicles (n = 52 SCs). Approximately two synaptic vesicles per SC were “anatomically docked.” Comparing the geometry of the synaptic structure with its previously studied functional properties, we find that during a single presynaptic action potential (AP) (1) ∌35% of the AZs release a transmitter quantum, (2) the number of SCs and anatomically docked vesicles is comparable with the low estimates of the readily releasable pool (RRP) of quanta, and (3) the broad distribution of PSD areas [coefficient of variation (CV) = 0.9] is likely to contribute to the large variability of miniature EPSC peaks. The geometry of the reconstructed synapse suggests that each of the hundreds of SCs is likely to contribute independently to the size and rising phase of the EPSC during a single AP
    • 

    corecore