232 research outputs found
Schr\"odinger cat state of a Bose-Einstein condensate in a double-well potential
We consider a weakly interacting coherently coupled Bose-Einstein condensate
in a double-well potential. We show by means of stochastic simulations that the
system could possibly be driven to an entangled macroscopic superposition state
or a Schr\"odinger cat state by means of a continuous quantum measurement
process.Comment: 6 pages; to be published in memorial volume for Dan Wall
Testing quantum superpositions of the gravitational field with Bose-Einstein condensates
We consider the gravity field of a Bose-Einstein condensate in a quantum
superposition. The gravity field then is also in a quantum superposition which
is in principle observable. Hence we have ``quantum gravity'' far away from the
so-called Planck scale
Optical response of superfluid state in dilute atomic Fermi-Dirac gases
We theoretically study the propagation of light in a Fermi-Dirac gas in the
presence of a superfluid state. BCS pairing between atoms in different
hyperfine levels may significantly increase the optical linewidth and line
shift of a quantum degenerate Fermi-Dirac gas and introduce a local-field
correction that, under certain conditions, dramatically dominates over the
Lorentz-Lorenz shift. These optical properties could possibly unambiguously
sign the presence of the superfluid state and determine the value of the BCS
order parameter.Comment: 5 pages, 2 figure
Measuring and engineering entropy and spin squeezing in weakly linked Bose-Einstein condensates
We propose a method to infer the single-particle entropy of bosonic atoms in
an optical lattice and to study the local evolution of entropy, spin squeezing,
and entropic inequalities for entanglement detection in such systems. This
method is based on experimentally feasible measurements of
non-nearest-neighbour coherences. We study a specific example of dynamically
controlling atom tunneling between selected sites and show that this could
potentially also improve the metrologically relevant spin squeezing
Controlled manipulation of light by cooperative response of atoms in an optical lattice
We show that a cooperative atom response in an optical lattice to resonant
incident light can be employed for precise control and manipulation of light on
a subwavelength scale. Specific collective excitation modes of the system that
result from strong light-mediated dipole-dipole interactions can be addressed
by tailoring the spatial phase-profile of the incident light. We demonstrate
how the collective response can be used to produce optical excitations at
well-isolated sites on the lattice.Comment: 8 pages, 1 figur
Pumping two dilute gas Bose-Einstein condensates with Raman light scattering
We propose an optical method for increasing the number of atoms in a pair of
dilute gas Bose-Einstein condensates. The method uses laser-driven Raman
transitions which scatter atoms between the condensate and non-condensate atom
fractions. For a range of condensate phase differences there is destructive
quantum interference of the amplitudes for scattering atoms out of the
condensates. Because the total atom scattering rate into the condensates is
unaffected the condensates grow. This mechanism is analogous to that
responsible for optical lasing without inversion. Growth using macroscopic
quantum interference may find application as a pump for an atom laser.Comment: 4 pages, no figure
Macroscopic superpositions of Bose-Einstein condensates
We consider two dilute gas Bose-Einstein condensates with opposite velocities
from which a monochromatic light field detuned far from the resonance of the
optical transition is coherently scattered. In the thermodynamic limit, when
the relative fluctuations of the atom number difference between the two
condensates vanish, the relative phase between the Bose-Einstein condensates
may be established in a superposition state by detections of spontaneously
scattered photons, even though the condensates have initially well-defined atom
numbers. For a finite system, stochastic simulations show that the measurements
of the scattered photons lead to a randomly drifting relative phase and drive
the condensates into entangled superpositions of number states. This is because
according to Bose-Einstein statistics the scattering to an already occupied
state is enhanced.Comment: 18 pages, RevTex, 5 postscript figures, 1 MacBinary eps-figur
Imprinting a topological interface using Zeeman shifts in an atomic spinor BoseāEinstein condensate
We propose to use spatial control of the Zeeman energy shifts in an ultracold atomic gas to engineer an interface between topologically distinct regions. This provides an experimentally accessible means for studying the interface physics of topological defects and textures. Using the spin-1 BoseāEinstein condensate as an example, we find spinor wave functions that represent defects and textures continuously connecting across the interface between polar and ferromagnetic regions induced by spatially varying Zeeman shifts. By numerical energy-minimization we characterize the defect core structures and determine the energetic stability. The techniques proposed could potentially be used in the laboratory to emulate complex interface physics arising, e.g., in cosmological and condensed-matter contexts in both uniform and lattice systems
Optical linewidth of a low density Fermi-Dirac gas
We study propagation of light in a Fermi-Dirac gas at zero temperature. We
analytically obtain the leading density correction to the optical linewidth.
This correction is a direct consequence of the quantum statistical correlations
of atomic positions that modify the optical interactions between the atoms at
small interatomic separations. The gas exhibits a dramatic line narrowing
already at very low densities.Comment: 4 pages, 2 figure
- ā¦