108 research outputs found

    Effects of Oestrogens and FSH on LH Stimulation of Steroid Production by Testis Leydig Cells from Immature Rats

    Get PDF
    Hypophysectomy of immature male rats results after 5 days in a decreased production of testosterone by isolated testis Leydig cells in response to LH. The LH responsiveness of the Leydig cells can be partly restored by treatment of the hypophysectomized rats with FSH. In continuation of previous reports on this subject (Steroids 28 (1976) 847; and 30 (1978) the following conclusions were derived from the results in the present paper: 1. After hypophysectomy of immature male rats the production of testosterone (T) as well as of 5‐pregnenolone (Δ5P) by isolated Leydig cells in response to LH is reduced. 2. Daily administration of FSH after hypophysectomy restores the Δ5P production in response to LH almost completely, but has a much smaller effect on the restoration of T production. 3. Administration of oestradiol benzoate (E2B) together with FSH has no effect on the restoration of LH‐stimulated Δ5P production, but causes a reduction of T production, when compared with Leydig cells from animals treated with FSH only. 4. Treatment of intact immature rats with E2B results in a decreased production of T and an increased production of Δ5P in isolated Leydig cells. 5. From experiments with labelled pregnenolone it appears that E2B and diethylstilboestrol (DES) inhibit the 17α‐hydroxylase activity of Leydig cells from intact as well as from hypophysectomized rats. This results in a reduced conversion of pregnenolone to C1:)‐steroids and in increased production of 3α‐hydroxy‐5α‐pregnan‐20‐one from ÎŽ5P. 6. The observed effects of FSH and E, were similar within a dose range of 100–10000 ng LH per 106 Leydig cells. Copyrigh

    Early increase in single-kidney glomerular filtration rate after living kidney donation predicts long-term kidney function

    Get PDF
    Single-kidney glomerular filtration rate (GFR) increases after living kidney donation due to compensatory hyperfiltration and structural changes. The implications of inter-individual variability in this increase in single-kidney GFR are unknown. Here, we aimed to identify determinants of the increase in single-kidney GFR at three-month postdonation, and to investigate its relationship with long-term kidney function. In a cohort study in 1024 donors, we found considerable inter-individual variability of the early increase in remaining single-kidney estimated GFR (eGFR) (median [25th-75th percentile]) 12 [8-18] mL/min/1.73m(2). Predonation eGFR, age, and cortical kidney volume measured by CT were the main determinants of the early postdonation increase in single-kidney eGFR. Individuals with a stronger early increase in single-kidney eGFR had a significantly higher five-year postdonation eGFR, independent of predonation eGFR and age. Addition of the postdonation increase in single-kidney eGFR to a model including predonation eGFR and age significantly improved prediction of a five-year postdonation eGFR under 50 mL/min/1.73m(2). Results at ten-year follow-up were comparable, while accounting for left-right differences in kidney volume did not materially change the results. Internal validation using 1251-iothalamate-based measured GFR in 529 donors and external validation using eGFR data in 647 donors yielded highly similar results. Thus, individuals with a more pronounced increase in single-kidney GFR had better long-term kidney function, independent of predonation GFR and age. Hence, the early postdonation increase in single-kidney GFR, considered indicative for kidney reserve capacity, may have additional value to eGFR and age to personalize follow-up intensity after living kidney donation

    A Successful Approach to Kidney Transplantation in Patients With Enteric (Secondary) Hyperoxaluria

    Get PDF
    Background. Enteric hyperoxaluria due to malabsorption may cause chronic oxalate nephropathy and lead to end-stage renal disease. Kidney transplantation is challenging given the risk of recurrent calcium-oxalate deposition and nephrolithiasis. Methods. We established a protocol to reduce plasma oxalic acid levels peritransplantation based on reduced intake and increased removal of oxalate. The outcomes of 10 kidney transplantation patients using this protocol are reported. Results. Five patients received a living donor kidney and had immediate graft function. Five received a deceased donor kidney and had immediate (n = 1) or delayed graft function (n = 4). In patients with delayed graft function, the protocol was prolonged after transplantation. In 3 patients, our protocol was reinstituted because of late complications affecting graft function. One patient with high-output stoma and relatively low oxalate levels had lost her first kidney transplant because of recurrent oxalate depositions but now receives intravenous fluid at home on a routine basis 3 times per week to prevent dehydration. Patients are currently between 3 and 32 months after transplantation and all have a stable estimated glomerular filtration rate (mean, 51 +/- 21 mL/min per 1.73 m(2)). In 4 of 8 patients who underwent for cause biopsies after transplantation oxalate depositions were found. Conclusions. This is the first systematic description of kidney transplantation in a cohort of patients with enteric hyperoxaluria. Common complications after kidney transplantation impact long-term transplant function in these patients. With our protocol, kidney transplantation outcomes were favorable in this population with unfavorable transplantation prospects and even previous unsuccessful transplants

    Incidence of cardiovascular events after kidney transplantation and cardiovascular risk scores: study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiovascular disease (CVD) is the major cause of death after renal transplantation. Not only conventional CVD risk factors, but also transplant-specific risk factors can influence the development of CVD in kidney transplant recipients.</p> <p>The main objective of this study will be to determine the incidence of post-transplant CVD after renal transplantation and related factors. A secondary objective will be to examine the ability of standard cardiovascular risk scores (Framingham, Regicor, SCORE, and DORICA) to predict post-transplantation cardiovascular events in renal transplant recipients, and to develop a new score for predicting the risk of CVD after kidney transplantation.</p> <p>Methods/Design</p> <p>Observational prospective cohort study of all kidney transplant recipients in the A Coruña Hospital (Spain) in the period 1981-2008 (2059 transplants corresponding to 1794 patients).</p> <p>The variables included will be: donor and recipient characteristics, chronic kidney disease-related risk factors, pre-transplant and post-transplant cardiovascular risk factors, routine biochemistry, and immunosuppressive, antihypertensive and lipid-lowering treatment. The events studied in the follow-up will be: patient and graft survival, acute rejection episodes and cardiovascular events (myocardial infarction, invasive coronary artery therapy, cerebral vascular events, new-onset angina, congestive heart failure, rhythm disturbances and peripheral vascular disease).</p> <p>Four cardiovascular risk scores were calculated at the time of transplantation: the Framingham score, the European Systematic Coronary Risk Evaluation (SCORE) equation, and the REGICOR (Registre Gironí del COR (Gerona Heart Registry)), and DORICA (Dyslipidemia, Obesity, and Cardiovascular Risk) functions.</p> <p>The cumulative incidence of cardiovascular events will be analyzed by competing risk survival methods. The clinical relevance of different variables will be calculated using the ARR (Absolute Risk Reduction), RRR (Relative Risk Reduction) and NNT (Number Needed to Treat).</p> <p>The ability of different cardiovascular risk scores to predict cardiovascular events will be analyzed by using the c index and the area under ROC curves. Based on the competing risks analysis, a nomogram to predict the probability of cardiovascular events after kidney transplantation will be developed.</p> <p>Discussion</p> <p>This study will make it possible to determine the post-transplant incidence of cardiovascular events in a large cohort of renal transplant recipients in Spain, to confirm the relationship between traditional and transplant-specific cardiovascular risk factors and CVD, and to develop a score to predict the risk of CVD in these patients.</p

    The Prevalence of Immunologic Injury in Renal Allograft Recipients with De Novo Proteinuria

    Get PDF
    Post-transplant proteinuria is a common complication after renal transplantation; it is associated with reduced graft and recipient survival. However, the prevalence of histological causes has been reported with considerable variation. A clinico-pathological re-evaluation of post-transplant proteinuria is necessary, especially after dismissal of the term “chronic allograft nephropathy,” which had been considered to be an important cause of proteinuria. Moreover, urinary protein can promote interstitial inflammation in native kidney, whether this occurs in renal allograft remains unknown. Factors that affect the graft outcome in patients with proteinuria also remain unclear. Here we collected 98 cases of renal allograft recipients who developed proteinuria after transplant, histological features were characterized using Banff scoring system. Cox proportional hazard regression models were used for graft survival predictors. We found that transplant glomerulopathy was the leading (40.8%) cause of post-transplant proteinuria. Immunological causes, including transplant glomerulopathy, acute rejection, and chronic rejection accounted for the majority of all pathological causes of proteinuria. Nevertheless, almost all patients that developed proteinuria had immunological lesions in the graft, especially for interstitial inflammation. Intraglomerular C3 deposition was unexpectedly correlated with the severity of proteinuria. Moreover, the severity of interstitial inflammation was an independent risk factor for graft loss, while high level of hemoglobin was a protective factor for graft survival. This study revealed a predominance of immunological parameters in renal allografts with post-transplant proteinuria. These parameters not only correlate with the severity of proteinuria, but also with the outcome of the graft
    • 

    corecore