516 research outputs found

    La edad de la incertidumbre: un estudio del cuento fantástico del siglo XX en Latinoamérica

    Get PDF
    The fantastic is a constant presence in the fiction, and in the story, of twentieth century Latin America. This book comes near to this way or narrative through the detailed analysis of some of the stories and significant authors (Leopoldo Lugones, Felisberto Hernandez, Jorge Luis Borges, Julio Cortázar, Gabriel Garci'a Márquez, Isabel Beyond or Ferré Rosary) Their work explains the enormous variety of forms that takes the fantastic phenomenon in Latin America.

    Resonant tunneling through a small quantum dot coupled to superconducting leads

    Full text link
    We address the problem of non-linear transport through discrete electronic levels in a small quantum dot coupled to superconducting electrodes. In our approach the low temperature I-V characteristics can be calculated including all multiple quasi-particle and Andreev processes. The limit of very weak coupling to the leads and large charging energies is briefly analyzed comparing the calculated lineshapes of the I-V curves with recent experimental results. When the coupling to the leads increases and Coulomb blockade effects can be neglected, the combination of multiple Andreev processes and resonant transmission gives rise to a rich subgap structure which largely differs from the one found in the more studied S-N-S systems. We show how multiple processes can be included within a simple sequential tunneling picture qualitatively explaining the subgap structure. We suggest an experimental set-up where the predicted effects could be observed.Comment: 11 pages, 4 postscript figures, to be published in Phys. Rev. B (rapid communications

    Perturbation expansion for 2-D Hubbard model

    Full text link
    We develop an efficient method to calculate the third-order corrections to the self-energy of the hole-doped two-dimensional Hubbard model in space-time representation. Using the Dyson equation we evaluate the renormalized spectral function in various parts of the Brillouin zone and find significant modifications with respect to the second-order theory even for rather small values of the coupling constant U. The spectral function becomes unphysical for UW U \simeq W , where W is the half-width of the conduction band. Close to the Fermi surface and for U<W, the single-particle spectral weight is reduced in a finite energy interval around the Fermi energy. The increase of U opens a gap between the occupied and unoccupied parts of the spectral function.Comment: 17 pages, 11 Postscript figures, Phys. Rev. B, accepte

    Subharmonic Gap Structure in Superconductor/Ferromagnet/Superconductor Junctions

    Full text link
    The behavior of dc subgap current in magnetic quantum point contact is discussed for the case of low-transparency junction with different tunnel probabilities for spin-up (DD_\uparrow) and spin-down (DD_\downarrow) electrons. Due to the presence of Andreev bound states ±ϵ0\pm \epsilon_0 in the system the positions of subgap electric current steps eVn=(Δ±ϵ0)/neV_n = (\Delta \pm \epsilon_0)/n are split at temperature T0T \neq 0 with respect to the nonmagnetic result eVn=2Δ/neV_n=2\Delta/n. It is found that under the condition DDD_\uparrow \neq D_\downarrow the spin current also manifests subgap structure, but only for odd values of nn. The split steps corresponding to n=1,2n=1,2 in subgap electric and spin currents are analytically calculated and the following steps are described qualitatively.Comment: 4 pages, 1 figure, minor stylistic changes, journal-ref adde

    Interplay between Josephson effect and magnetic interactions in double quantum dots

    Full text link
    We analyze the magnetic and transport properties of a double quantum dot coupled to superconducting leads. In addition to the possible phase transition to a π\pi state, already present in the single dot case, this system exhibits a richer magnetic behavior due to the competition between Kondo and inter-dot antiferromagnetic coupling. We obtain results for the Josephson current which may help to understand recent experiments on superconductor-metallofullerene dimer junctions. We show that in such a system the Josephson effect can be used to control its magnetic configuration.Comment: 5 pages, 4 figure

    Shock wave formation in compliant arteries

    Full text link
    [EN] We focus on the problem of shock wave formation in a model of blood flow along an elastic artery. We analyze the conditions under which this phenomenon can appear and we provide an estimation of the instant of shock formation. Numerical simulations of the model have been conducted using the Discontinuous Galerkin Finite Element Method. The results are consistent with certain phenomena observed by practitioners in patients with arteriopathies, and they could predict the possible formation of a shock wave in the aorta.C. Rodero and I. Garcia-Fernandez are supported by Projects TIN2014-59932-JIN (MINECO/FEDER, EU) and CIB16-BM019 (IISCII). J. A. Conejero is supported by MEC, Project MTM2016-75963-P.Rodero, C.; Conejero, JA.; García-Fernández, I. (2019). Shock wave formation in compliant arteries. Evolution Equations and Control Theory (Online). 8(1):221-230. https://doi.org/10.3934/eect.2019012S2212308
    corecore