221 research outputs found

    A Small Conductance Calcium-Activated K<sup>+</sup> Channel in C. elegans, KCNL-2, Plays a Role in the Regulation of the Rate of Egg-Laying

    Get PDF
    In the nervous system of mice, small conductance calcium-activated potassium (SK) channels function to regulate neuronal excitability through the generation of a component of the medium afterhyperpolarization that follows action potentials. In humans, irregular action potential firing frequency underlies diseases such as ataxia, epilepsy, schizophrenia and Parkinson's disease. Due to the complexity of studying protein function in the mammalian nervous system, we sought to characterize an SK channel homologue, KCNL-2, in C. elegans, a genetically tractable system in which the lineage of individual neurons was mapped from their early developmental stages. Sequence analysis of the KCNL-2 protein reveals that the six transmembrane domains, the potassium-selective pore and the calmodulin binding domain are highly conserved with the mammalian homologues. We used widefield and confocal fluorescent imaging to show that a fusion construct of KCNL-2 with GFP in transgenic lines is expressed in the nervous system of C. elegans. We also show that a KCNL-2 null strain, kcnl-2(tm1885), demonstrates a mild egg-laying defective phenotype, a phenotype that is rescued in a KCNL-2-dependent manner. Conversely, we show that transgenic lines that overexpress KCNL-2 demonstrate a hyperactive egg-laying phenotype. In this study, we show that the vulva of transgenic hermaphrodites is highly innervated by neuronal processes and by the VC4 and VC5 neurons that express GFP-tagged KCNL-2. We propose that KCNL-2 functions in the nervous system of C. elegans to regulate the rate of egg-laying. © 2013 Chotoo et al

    Lycopene and Myocardial Infarction Risk in the EURAMIC Study

    Get PDF
    A multicenter case-control study was conducted to evaluate the relations between antioxidant status assessed by biomarkers and acute myocardial infarction. Incidence cases and frequency matched controls were recruited from 10 European countries to maximize the variance in exposure within the study. Adipose tissue needle aspiration biopsies were taken shortly after the infarction and analyzed for levels of carotenoids and tocopherols. An examination of colinearity including all covariates and the three carotenoids, α-carotene, β-carotene, and lycopene, showed that the variables were sufficiently independent to model simultaneously. When examined singularly, each of the carotenoids appeared to be protective. Upon simultaneous analyses of the carotenoids, however, using conditional logistic regression models that controlled for age, body mass index, socioeconomic status, smoking, hypertension, and maternal and paternal history of disease, lycopene remained independently protective, with an odds ratio of 0.52 for the contrast of the 10th and 90th percentiles (95% confidence interval 0.33-0.82, p= 0.005). The associations for α- and β-carotene were largely eliminated. We conclude that lycopene, or some substance highly correlated which is in a common food source, may contribute to the protective effect of vegetable consumption on myocardial infarction ris

    Association Between Toenail Selenium and Risk of Acute Myocardial Infarction in European Men: The EURAMIC Study

    Get PDF
    The association between selenium status and risk of acute myocardial infarction was examined in a multicenter case-control study in 10 centers from Europe and Israel in 1991-1992. Selenium in toenails was assessed for 683 nonfatal male cases with first acute myocardial infarction and 729 controls less than 70 years of age. Median toenail selenium content was 0.553 μg/g for cases and 0.590 μg/g for controls. After adjustment for age, center, and smoking, the odds ratio for myocardial infarction in the highest quintile of selenium as compared with the lowest was 0.63 . The observed inverse trend was somewhat stronger when the authors adjusted for vitamin E status (p = 0.05). Analysis stratified for smoking habits showed an inverse association in former smokers (odds ratio for the 75th-25th percentile contrast = 0.63 (95 percent confidence interval 0.43-0.94)), but not in current smokers (odds ratio = 0.97 ( 0.71-1.32)) or in those who had never smoked (odds ratio = 1.55 (0.87-2.76)). Analysis stratified by center showed a significant inverse association between selenium levels and risk of myocardial infarction for Germany (Berlin) only (75th to 25th percentile odds ratio = 0.62 (95 percent confidence interval 0.42-0.91)), which was the center with the lowest selenium levels. It appears that the increased risk of acute myocardial infarction at low levels of selenium intake is largely explained by cigarette smoking; selenium status does not appear to be an important determinant of risk of myocardial infarction at the levels observed in a large part of Europe. Am J Epidemiol 1997; 145: 373-

    Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity

    Get PDF
    Treatment of onchocerciasis using mass ivermectin administration has reduced morbidity and transmission throughout Africa and Central/South America. Mass drug administration is likely to exert selection pressure on parasites, and phenotypic and genetic changes in several Onchocerca volvulus populations from Cameroon and Ghana-exposed to more than a decade of regular ivermectin treatment-have raised concern that sub-optimal responses to ivermectin's anti-fecundity effect are becoming more frequent and may spread.Pooled next generation sequencing (Pool-seq) was used to characterise genetic diversity within and between 108 adult female worms differing in ivermectin treatment history and response. Genome-wide analyses revealed genetic variation that significantly differentiated good responder (GR) and sub-optimal responder (SOR) parasites. These variants were not randomly distributed but clustered in ~31 quantitative trait loci (QTLs), with little overlap in putative QTL position and gene content between the two countries. Published candidate ivermectin SOR genes were largely absent in these regions; QTLs differentiating GR and SOR worms were enriched for genes in molecular pathways associated with neurotransmission, development, and stress responses. Finally, single worm genotyping demonstrated that geographic isolation and genetic change over time (in the presence of drug exposure) had a significantly greater role in shaping genetic diversity than the evolution of SOR.This study is one of the first genome-wide association analyses in a parasitic nematode, and provides insight into the genomics of ivermectin response and population structure of O. volvulus. We argue that ivermectin response is a polygenically-determined quantitative trait (QT) whereby identical or related molecular pathways but not necessarily individual genes are likely to determine the extent of ivermectin response in different parasite populations. Furthermore, we propose that genetic drift rather than genetic selection of SOR is the underlying driver of population differentiation, which has significant implications for the emergence and potential spread of SOR within and between these parasite populations

    Current Understanding of the Anatomy, Physiology, and Magnetic Resonance Imaging of Neurofluids: Update From the 2022 “<scp>ISMRM</scp> Imaging Neurofluids Study group” Workshop in Rome

    Get PDF
    Neurofluids is a term introduced to define all fluids in the brain and spine such as blood, cerebrospinal fluid, and interstitial fluid. Neuroscientists in the past millennium have steadily identified the several different fluid environments in the brain and spine that interact in a synchronized harmonious manner to assure a healthy microenvironment required for optimal neuroglial function. Neuroanatomists and biochemists have provided an incredible wealth of evidence revealing the anatomy of perivascular spaces, meninges and glia and their role in drainage of neuronal waste products. Human studies have been limited due to the restricted availability of noninvasive imaging modalities that can provide a high spatiotemporal depiction of the brain neurofluids. Therefore, animal studies have been key in advancing our knowledge of the temporal and spatial dynamics of fluids, for example, by injecting tracers with different molecular weights. Such studies have sparked interest to identify possible disruptions to neurofluids dynamics in human diseases such as small vessel disease, cerebral amyloid angiopathy, and dementia. However, key differences between rodent and human physiology should be considered when extrapolating these findings to understand the human brain. An increasing armamentarium of noninvasive MRI techniques is being built to identify markers of altered drainage pathways. During the three‐day workshop organized by the International Society of Magnetic Resonance in Medicine that was held in Rome in September 2022, several of these concepts were discussed by a distinguished international faculty to lay the basis of what is known and where we still lack evidence. We envision that in the next decade, MRI will allow imaging of the physiology of neurofluid dynamics and drainage pathways in the human brain to identify true pathological processes underlying disease and to discover new avenues for early diagnoses and treatments including drug delivery.Evidence level: 1Technical Efficacy: Stage

    Oxygen-sensing neurons reciprocally regulate peripheral lipid metabolism via neuropeptide signaling in <i>Caenorhabditis elegans</i>

    Get PDF
    <div><p>The mechanisms by which the sensory environment influences metabolic homeostasis remains poorly understood. In this report, we show that oxygen, a potent environmental signal, is an important regulator of whole body lipid metabolism. <i>C</i>. <i>elegans</i> oxygen-sensing neurons reciprocally regulate peripheral lipid metabolism under normoxia in the following way: under high oxygen and food absence, URX sensory neurons are activated, and stimulate fat loss in the intestine, the major metabolic organ for <i>C</i>. <i>elegans</i>. Under lower oxygen conditions or when food is present, the BAG sensory neurons respond by repressing the resting properties of the URX neurons. A genetic screen to identify modulators of this effect led to the identification of a BAG-neuron-specific neuropeptide called FLP-17, whose cognate receptor EGL-6 functions in URX neurons. Thus, BAG sensory neurons counterbalance the metabolic effect of tonically active URX neurons via neuropeptide communication. The combined regulatory actions of these neurons serve to precisely tune the rate and extent of fat loss to the availability of food and oxygen, and provides an interesting example of the myriad mechanisms underlying homeostatic control.</p></div

    A Single Gene Target of an ETS-Family Transcription Factor Determines Neuronal CO2-Chemosensitivity

    Get PDF
    Many animals possess neurons specialized for the detection of carbon dioxide (CO2), which acts as a cue to elicit behavioral responses and is also an internally generated product of respiration that regulates animal physiology. In many organisms how such neurons detect CO2 is poorly understood. We report here a mechanism that endows C. elegans neurons with the ability to detect CO2. The ETS-5 transcription factor is necessary for the specification of CO2-sensing BAG neurons. Expression of a single ETS-5 target gene, gcy-9, which encodes a receptor-type guanylate cyclase, is sufficient to bypass a requirement for ets-5 in CO2-detection and transforms neurons into CO2-sensing neurons. Because ETS-5 and GCY-9 are members of gene families that are conserved between nematodes and vertebrates, a similar mechanism might act in the specification of CO2-sensing neurons in other phyla

    Pheromone-sensing neurons regulate peripheral lipid metabolism in <i>Caenorhabditis elegans</i>

    Get PDF
    It is now established that the central nervous system plays an important role in regulating whole body metabolism and energy balance. However, the extent to which sensory systems relay environmental information to modulate metabolic events in peripheral tissues has remained poorly understood. In addition, it has been challenging to map the molecular mechanisms underlying discrete sensory modalities with respect to their role in lipid metabolism. In previous work our lab has identified instructive roles for serotonin signaling as a surrogate for food availability, as well as oxygen sensing, in the control of whole body metabolism. In this study, we now identify a role for a pair of pheromone-sensing neurons in regulating fat metabolism in C. elegans, which has emerged as a tractable and highly informative model to study the neurobiology of metabolism. A genetic screen revealed that GPA-3, a member of the Gα family of G proteins, regulates body fat content in the intestine, the major metabolic organ for C. elegans. Genetic and reconstitution studies revealed that the potent body fat phenotype of gpa-3 null mutants is controlled from a pair of neurons called ADL(L/R). We show that cAMP functions as the second messenger in the ADL neurons, and regulates body fat stores via the neurotransmitter acetylcholine, from downstream neurons. We find that the pheromone ascr#3, which is detected by the ADL neurons, regulates body fat stores in a GPA-3-dependent manner. We define here a third sensory modality, pheromone sensing, as a major regulator of body fat metabolism. The pheromone ascr#3 is an indicator of population density, thus we hypothesize that pheromone sensing provides a salient 'denominator' to evaluate the amount of food available within a population and to accordingly adjust metabolic rate and body fat levels
    corecore