27 research outputs found

    Testing the Flyby Anomaly with the GNSS Constellation

    Full text link
    We propose the concept of a space mission to probe the so called flyby anomaly, an unexpected velocity change experienced by some deep-space probes using earth gravity assists. The key feature of this proposal is the use of GNSS systems to obtain an increased accuracy in the tracking of the approaching spacecraft, mainly near the perigee. Two low-cost options are also discussed to further test this anomaly: an add-on to an existing spacecraft and a dedicated mission.Comment: 8 pages, 1 figure, 4 table

    The Pioneer anomaly and the holographic scenario

    Full text link
    In this paper we discuss the recently obtained relation between the Verlinde's holographic model and the first phenomenological Modified Newtonian dynamics. This gives also a promising possible explanation to the Pioneer anomaly.Comment: 5 pages, Accepted for publication in Astrophysics & Space Scienc

    The unexpected resurgence of Weyl geometry in late 20-th century physics

    Full text link
    Weyl's original scale geometry of 1918 ("purely infinitesimal geometry") was withdrawn by its author from physical theorizing in the early 1920s. It had a comeback in the last third of the 20th century in different contexts: scalar tensor theories of gravity, foundations of gravity, foundations of quantum mechanics, elementary particle physics, and cosmology. It seems that Weyl geometry continues to offer an open research potential for the foundations of physics even after the turn to the new millennium.Comment: Completely rewritten conference paper 'Beyond Einstein', Mainz Sep 2008. Preprint ELHC (Epistemology of the LHC) 2017-02, 92 pages, 1 figur

    The Pioneer Anomaly

    Get PDF
    Radio-metric Doppler tracking data received from the Pioneer 10 and 11 spacecraft from heliocentric distances of 20-70 AU has consistently indicated the presence of a small, anomalous, blue-shifted frequency drift uniformly changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was interpreted as a constant sunward deceleration of each particular spacecraft at the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of the Newton's gravitational inverse-square law has become known as the Pioneer anomaly; the nature of this anomaly remains unexplained. In this review, we summarize the current knowledge of the physical properties of the anomaly and the conditions that led to its detection and characterization. We review various mechanisms proposed to explain the anomaly and discuss the current state of efforts to determine its nature. A comprehensive new investigation of the anomalous behavior of the two Pioneers has begun recently. The new efforts rely on the much-extended set of radio-metric Doppler data for both spacecraft in conjunction with the newly available complete record of their telemetry files and a large archive of original project documentation. As the new study is yet to report its findings, this review provides the necessary background for the new results to appear in the near future. In particular, we provide a significant amount of information on the design, operations and behavior of the two Pioneers during their entire missions, including descriptions of various data formats and techniques used for their navigation and radio-science data analysis. As most of this information was recovered relatively recently, it was not used in the previous studies of the Pioneer anomaly, but it is critical for the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living Reviews in Relativit

    OSS (Outer Solar System): A fundamental and planetary physics mission to Neptune, Triton and the Kuiper Belt

    Full text link
    The present OSS mission continues a long and bright tradition by associating the communities of fundamental physics and planetary sciences in a single mission with ambitious goals in both domains. OSS is an M-class mission to explore the Neptune system almost half a century after flyby of the Voyager 2 spacecraft. Several discoveries were made by Voyager 2, including the Great Dark Spot (which has now disappeared) and Triton's geysers. Voyager 2 revealed the dynamics of Neptune's atmosphere and found four rings and evidence of ring arcs above Neptune. Benefiting from a greatly improved instrumentation, it will result in a striking advance in the study of the farthest planet of the Solar System. Furthermore, OSS will provide a unique opportunity to visit a selected Kuiper Belt object subsequent to the passage of the Neptunian system. It will consolidate the hypothesis of the origin of Triton as a KBO captured by Neptune, and improve our knowledge on the formation of the Solar system. The probe will embark instruments allowing precise tracking of the probe during cruise. It allows to perform the best controlled experiment for testing, in deep space, the General Relativity, on which is based all the models of Solar system formation. OSS is proposed as an international cooperation between ESA and NASA, giving the capability for ESA to launch an M-class mission towards the farthest planet of the Solar system, and to a Kuiper Belt object. The proposed mission profile would allow to deliver a 500 kg class spacecraft. The design of the probe is mainly constrained by the deep space gravity test in order to minimise the perturbation of the accelerometer measurement.Comment: 43 pages, 10 figures, Accepted to Experimental Astronomy, Special Issue Cosmic Vision. Revision according to reviewers comment

    Anomalous accelerations in spacecraft flybys of the Earth

    Full text link
    [EN] The flyby anomaly is a persistent riddle in astrodynamics. Orbital analysis in several flybys of the Earth since the Galileo spacecraft flyby of the Earth in 1990 have shown that the asymptotic post-encounter velocity exhibits a difference with the initial velocity that cannot be attributed to conventional effects. To elucidate its origin, we have developed an orbital program for analyzing the trajectory of the spacecraft in the vicinity of the perigee, including both the Sun and the MoonÂżs tidal perturbations and the geopotential zonal, tesseral and sectorial harmonics provided by the EGM96 model. The magnitude and direction of the anomalous acceleration acting upon the spacecraft can be estimated from the orbital determination program by comparing with the trajectories fitted to telemetry data as provided by the mission teams. This acceleration amounts to a fraction of a mm/s2 and decays very fast with altitude. The possibility of some new physics of gravity in the altitude range for spacecraft flybys is discussed.Acedo RodrĂ­guez, L. (2017). Anomalous accelerations in spacecraft flybys of the Earth. Astrophysics and Space Science. 362(12):1-15. doi:10.1007/s10509-017-3205-xS11536212Acedo, L.: Galaxies 3, 113 (2015)Acedo, L.: Mon. Not. R. Astron. Soc. 463(2), 2119 (2016)Acedo, L.: Adv. Space Res. 59(7), 1715 (2017). 1701.06939Acedo, L., Bel, L.: Astron. Nachr. 338(1), 117 (2017). 1602.03669Adler, S.L.: Int. J. Mod. Phys. A 25, 4577 (2010). 0908.2414 . doi: 10.1142/S0217751X10050706Adler, S.L.: In: Proceedings of the Conference in Honour of Murray Gellimann’s 80th Birthday, p. 352 (2011). doi: 10.1142/9789814335614_0032Anderson, J.D., Nieto, M.M.: In: Klioner, S.A., Seidelmann, P.K., Soffel, M.H. (eds.) Relativity in Fundamental Astronomy: Dynamics, Reference Frames, and Data Analysis. IAU Symposium, vol. 261, p. 189 (2010). doi: 10.1017/S1743921309990378Anderson, J.D., Laing, P.A., Lau, E.L., Liu, A.S., Nieto, M.M., Turyshev, S.G.: Phys. Rev. Lett. 81(14), 2858 (1998). gr-qc/0104064 . doi: 10.1103/PhysRevLett.81.2858Anderson, J.D., Laing, P.A., Lau, E.L., Liu, A.S., Nieto, M.M., Turyshev, S.G.: Phys. Rev. D 65(8), 082004 (2002). gr-qc/0104064 . doi: 10.1103/PhysRevD.65.082004Anderson, J.D., Campbell, J.K., Ekelund, J.E., Ellis, J., Jordan, J.F.: Phys. Rev. Lett. 100(9), 091102 (2008). doi: 10.1103/PhysRevLett.100.091102Atchison, J.A., Peck, M.A.: J. Guid. Control Dyn. 33, 1115 (2010). doi: 10.2514/1.47413Bertolami, O., Francisco, F., Gil, P.J.S.: Class. Quantum Gravity 33(12), 125021 (2016). 1507.08457 . doi: 10.1088/0264-9381/33/12/125021Bolton, S.J., Adriani, A., Adumitroaie, V., Allison, M., Anderson, J., Atreya, S., Bloxham, J., Brown, S., Connerney, J.E.P., DeJong, E., Folkner, W., Gautier, D., Grassi, D., Gulkis, S., Guillot, T., Hansen, C., Hubbard, W.B., Iess, L., Ingersoll, A., Janssen, M., Jorgensen, J., Kaspi, Y., Levin, S.M., Li, C., Lunine, J., Miguel, Y., Mura, A., Orton, G., Owen, T., Ravine, M., Smith, E., Steffes, P., Stone, E., Stevenson, D., Thorne, R., Waite, J., Durante, D., Ebert, R.W., Greathouse, T.K., Hue, V., Parisi, M., Szalay, J.R., Wilson, R.: Science 356, 821 (2017). doi: 10.1126/science.aal2108Cahill, R.T.: ArXiv e-prints (2008). 0804.0039Chamberlin, A., Yeomans, D., Giorgini, J., Chodas, P.: Horizons Ephemeris System (2016). http://ssd.jpl.nasa.gov/horizons.cgi . Accessed: 2016-10-27Chao, B.F.: C. R. GĂ©osci. 338, 1123 (2006). doi: 10.1016/j.crte.2006.09.014Coddington, E., Levinson, N.: McGraw-Hill, New York (1955)Debono, I., Smoot, G.F.: Universe 2(4), 23 (2016). doi: 10.3390/universe2040023Desai, S.D.: J. Geophys. Res., Oceans 107(C11), 7 (2002). 3186. doi: 10.1029/2001JC001224Dickey, J.O., Bender, P.L., Faller, J.E., Newhall, X.X., Ricklefs, R.L., Ries, J.G., Shelus, P.J., Veillet, C., Whipple, A.L., Wiant, J.R., Williams, J.G., Yoder, C.F.: Science 265, 482 (1994). doi: 10.1126/science.265.5171.482Dyson, F.W., Eddington, A.S., Davidson, C.: Philos. Trans. R. Soc. Lond., Ser. A 220, 291 (1920). doi: 10.1098/rsta.1920.0009Everitt, C.W.F., et al.: Phys. Rev. Lett. 221101(106) (2011)Feng, J.L., Fornal, B., Galon, I., Gardner, S., Smolinsky, J., Tait, T.M.P., Tanedo, P.: Phys. Rev. Lett. 117, 071803 (2016). 1604.07411 . doi: 10.1103/PhysRevLett.117.071803Folkner, W.M., Williams, J.G., Boggs, D.H., Park, R.S., Kuchynka, P.: IPN Prog. Rep. 42(196) (2014)Fornberg, B.: Math. Comput. 51(184), 699 (1988). doi: 10.1090/S0025-5718-1988-0935077-0Franklin, A., Fischback, E.: The Rise and Fall of the Fifth Force. Discovery, Pursuit, and Justification in Modern Physics, second edition. Springer, New York (2016)Giorgini, J.D.: Personal communication (2015)Hackmann, E., Laemmerzahl, C.: In: 38th COSPAR Scientific Assembly. COSPAR Meeting, vol. 38, p. 3 (2010)Hafele, J.C.: ArXiv e-prints (2009). 0904.0383ICGEM: International Center for Global Gravity Field Models. http://icgem.gfz-potsdam.de/tom_longtimeIERS: In: Petit, G., Luzum, B. (eds.) IERS Conventions (2010), p. 1. Verlag des Bundesamts fĂŒr Kartographie und GeodĂ€sie, Frankfurt am Main (2010)Iess, L., Asmar, S.: Int. J. Mod. Phys. D 16, 2117 (2007). doi: 10.1142/S0218271807011449Iess, L., Asmar, S., Tortora, P.: Acta Astronaut. 65, 666 (2009). doi: 10.1016/j.actaastro.2009.01.049Iess, L., Di Benedetto, M., James, M., Mercolino, M., Simone, L., Tortora, P.: Acta Astronaut. 94, 699 (2014). doi: 10.1016/j.actaastro.2013.06.011Iorio, L.: Sch. Res. Exch. (2009). 0811.3924 . doi: 10.3814/2009/807695Iorio, L.: Astron. J. 142, 68 (2011a). 1102.4572 . doi: 10.1088/0004-6256/142/3/68Iorio, L.: Mon. Not. R. Astron. Soc. 415, 1266 (2011b). 1102.0212Iorio, L.: Europhys. Lett. (2011c). 1105.4145 . doi: 10.1209/0295-5075/96/30001Iorio, L.: Adv. Space Res. 54(11), 2441 (2014a). 1311.4218 . doi: 10.1016/j.asr.2014.06.035Iorio, L.: Galaxies 2, 259 (2014b). 1404.6537 . doi: 10.3390/galaxies2020259Iorio, L.: Universe 1(1), 38 (2015a). doi: 10.3390/universe1010038Iorio, L.: Int. J. Mod. Phys. D 24, 1530015 (2015b). 1412.7673Iorio, L., Giudice, G.: New Astron. 11, 600 (2006). gr-qc/0601055Iorio, L., Lichtenegger, H.I.M., Ruggiero, M.L., Corda, C.: Astrophys. Space Sci. 331, 351 (2011). 1009.3225 . doi: 10.1007/s10509-010-0489-5Jouannic, B., Noomen, R., van den IJSel, J.A.A.: In: Proceedings of the 25th International Symposium on Space Flight Dynamics ISSFD, Munich, Germany (2015)Kennefick, D.: Phys. Today 62, 37 (2009). doi: 10.1063/1.3099578King-Hele, D.: Satellite Orbits in an Atmosphere. Theory and Applications. Blackie and Son Ltd., Glasgow (1987)LĂ€mmerzahl, C., Preuss, O., Dittus, H.: In: Dittus, H., Lammerzahl, C., Turyshev, S.G. (eds.) Lasers, Clocks and Drag-Free Control: Exploration of Relativistic Gravity in Space. Astrophysics and Space Science Library, vol. 349, p. 75 (2008). doi: 10.1007/978-3-540-34377-6_3Le Verrier, U.: C. R. Hebd. Acad. Sci. 49, 379 (1859)Lemoine, F.G.E.A.: NASA/TP-1998-206861 (1998)Lewis, R.A.: In: Robertson, G.A. (ed.) American Institute of Physics Conference Series. American Institute of Physics Conference Series, vol. 1103, p. 226 (2009). doi: 10.1063/1.3115499Longair, M.: Philos. Trans. R. Soc., Math. Phys. Eng. Sci. (2015). doi: 10.1098/rsta.2014.0287McCulloch, M.E.: Mon. Not. R. Astron. Soc. 389, 57 (2008). 0806.4159 . doi: 10.1111/j.1745-3933.2008.00523.xMoe, M.M., Wallace, S.D., Moe, K.: In: Washington DC American Geophysical Union Geophysical Monograph Series, vol. 87, p. 349 (1995). doi: 10.1029/GM087p0349Murphy, E.M.: Phys. Rev. Lett. 83, 1890 (1998). doi: 10.1103/PhysRevLett.83.1890Naval Observatory: Dept. of the Navy, USA (2009)Newcomb, S.: Tables of the Four Inner Planets. Government Printing Office, Washington (1895)Nyambuya, G.G.: ArXiv e-prints (2008). 0803.1370Nyambuya, G.G.: New Astron. 57, 22 (2017). doi: 10.1016/j.newast.2017.06.001PĂĄramos, J., Hechenblaikner, G.: Adv. Space Res. 79–80(7), 76 (2013). 1210.7333v1Peskin, M.E., Schroeder, D.V.: An Introduction to Quantum Field Theory. Westview Press, Perseus Books Group, London (1995)Pinheiro, M.J.: Phys. Lett. A 378, 3007 (2014). 1404.1101Pinheiro, M.J.: Mon. Not. R. Astron. Soc. 461(4), 3948 (2016)Renzetti, G.: Cent. Eur. J. Phys. 11, 531 (2013). doi: 10.2478/s11534-013-0189-1Rievers, B., LĂ€mmerzahl, C.: Ann. Phys. 523, 439 (2011). 1104.3985 . doi: 10.1002/andp.201100081Roseveare, N.T.: Mercury’s Perihelion, from Le Verrier to Einstein. Clarendon Press, Wotton-under-Edge (1982)Rubincam, D.P.: Icarus 148, 2 (2000). doi: 10.1006/icar.2000.6485Standish, E.M.: In: Macias, A., LĂ€mmerzahl, C., Camacho, A. (eds.) Recent Developments in Gravitation and Cosmology. American Institute of Physics Conference Series, vol. 977, p. 254 (2008). doi: 10.1063/1.2902789Standish, E.M.: In: Klioner, S.A., Seidelmann, P.K., Soffel, M.H. (eds.) Relativity in Fundamental Astronomy: Dynamics, Reference Frames, and Data Analysis. IAU Symposium, vol. 261, p. 179 (2010). doi: 10.1017/S1743921309990354Thompson, P.F., Abrahamson, M., Ardalan, S., Bordi, J.: In: 24th AAS/AIAA Space Flight Mechanics Meeting, Santa Fe, New Mexico, January 26–30, 2014 (2014). http://hdl.handle.net/2014/45519Turyshev, S.G., Toth, V.T.: Living Rev. Relativ. (2010). 1001.3686 . doi: 10.12942/lrr-2010-4Turyshev, S.G., Toth, V.T., Kinsella, G., Lee, S.-C., Lok, S.M., Ellis, J.: Phys. Rev. Lett. 108(24), 241101 (2012). 1204.2507 . doi: 10.1103/PhysRevLett.108.241101Varieschi, G.U.: Gen. Relativ. Gravit. 46, 1741 (2014). 1401.6503 . doi: 10.1007/s10714-014-1741-zWilhelm, K., Dwivedi, B.N.: Astrophys. Space Sci. 358, 18 (2015). doi: 10.1007/s10509-015-2413-5Will, C.M.: Living Rev. Relativ. 3(9) (2006)Will, C.M.: Class. Quantum Gravity (2015). doi: 10.1098/rsta.2014.0287Will, C.M.: In: Peron, R., Colpi, M., Gorini, V., Moschella, U. (eds.) Gravity: Where Do We Stand? Astrophysics and Space Science Library, vol. 349, p. 9 (2016). doi: 10.1007/978-3-319-20224-2_2Williams, J.G., Boggs, D.H.: Celest. Mech. Dyn. Astron. 126, 89 (2016). doi: 10.1007/s10569-016-9702-3Williams, J.G., Dickey, J.O.: In: Noomen, R., Klosko, S., Noll, C., Pearlman, M. (eds.) Proceedings of 13th International Workshop on Laser Ranging, p. 75 (2003). http://cddisa.gsfc.nasa.gov/lw13/lw_proceedings.htmlWilliams, J.G., Newhall, X.X., Dickey, J.O.: Phys. Rev. D 53, 6730 (1996). doi: 10.1103/PhysRevD.53.6730Williams, J.G., Turyshev, S.G., Boggs, D.H.: Phys. Rev. Lett. 93(26), 261101 (2004). gr-qc/0411113 . doi: 10.1103/PhysRevLett.93.261101Williams, J.G., Turyshev, S.G., Boggs, D.H.: Planet. Sci. 3, 2 (2014). doi: 10.1186/s13535-014-0002-5Williams, J.G., Boggs, D.H., Yoder, C.F., Ratcliff, J.T., Dickey, J.O.: J. Geophys. Res. 106, 27933 (2001). doi: 10.1029/2000JE001396Wolfram, S.: The Mathematica Book, fifth edition. Wolfram Media, Champaign (2003

    The Confrontation between General Relativity and Experiment

    Full text link
    corecore