177 research outputs found

    Activation of p38 MAPK pathway in the skull abnormalities of Apert syndrome Fgfr2+P253R mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Apert syndrome is characterized by craniosynostosis and limb abnormalities and is primarily caused by FGFR2 +/P253R and +/S252W mutations. The former mutation is present in approximately one third whereas the latter mutation is present in two-thirds of the patients with this condition. We previously reported an inbred transgenic mouse model with the Fgfr2 +/S252W mutation on the C57BL/6J background for Apert syndrome. Here we present a mouse model for the Fgfr2+/P253R mutation.</p> <p>Results</p> <p>We generated inbred <it>Fgfr2</it><sup>+/<it>P253R </it></sup>mice on the same C56BL/6J genetic background and analyzed their skeletal abnormalities. 3D micro-CT scans of the skulls of the <it>Fgfr2</it><sup>+/<it>P253R </it></sup>mice revealed that the skull length was shortened with the length of the anterior cranial base significantly shorter than that of the <it>Fgfr2</it><sup>+/<it>S252W </it></sup>mice at P0. The <it>Fgfr2</it><sup>+/<it>P253R </it></sup>mice presented with synostosis of the coronal suture and proximate fronts with disorganized cellularity in sagittal and lambdoid sutures. Abnormal osteogenesis and proliferation were observed at the developing coronal suture and long bones of the <it>Fgfr2</it><sup>+/<it>P253R </it></sup>mice as in the <it>Fgfr2</it><sup>+/<it>S252W </it></sup>mice. Activation of mitogen-activated protein kinases (MAPK) was observed in the <it>Fgfr2</it><sup>+/<it>P253R </it></sup>neurocranium with an increase in phosphorylated p38 as well as ERK1/2, whereas phosphorylated AKT and PKCα were not obviously changed as compared to those of wild-type controls. There were localized phenotypic and molecular variations among individual embryos with different mutations and among those with the same mutation.</p> <p>Conclusions</p> <p>Our <it>in vivo </it>studies demonstrated that the Fgfr2 +/P253R mutation resulted in mice with cranial features that resemble those of the <it>Fgfr2</it><sup>+/<it>S252W </it></sup>mice and human Apert syndrome. Activated p38 in addition to the ERK1/2 signaling pathways may mediate the mutant neurocranial phenotype. Though Apert syndrome is traditionally thought to be a consistent phenotype, our results suggest localized and regional variations in the phenotypes that characterize Apert syndrome.</p

    Dysmorphometrics: the modelling of morphological abnormalities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The study of typical morphological variations using quantitative, morphometric descriptors has always interested biologists in general. However, unusual examples of form, such as abnormalities are often encountered in biomedical sciences. Despite the long history of morphometrics, the means to identify and quantify such unusual form differences remains limited.</p> <p>Methods</p> <p>A theoretical concept, called dysmorphometrics, is introduced augmenting current geometric morphometrics with a focus on identifying and modelling form abnormalities. Dysmorphometrics applies the paradigm of detecting form differences as outliers compared to an appropriate norm. To achieve this, the likelihood formulation of landmark superimpositions is extended with outlier processes explicitly introducing a latent variable coding for abnormalities. A tractable solution to this augmented superimposition problem is obtained using Expectation-Maximization. The topography of detected abnormalities is encoded in a dysmorphogram.</p> <p>Results</p> <p>We demonstrate the use of dysmorphometrics to measure abrupt changes in time, asymmetry and discordancy in a set of human faces presenting with facial abnormalities.</p> <p>Conclusion</p> <p>The results clearly illustrate the unique power to reveal unusual form differences given only normative data with clear applications in both biomedical practice & research.</p

    Increase in immune cell infiltration with progression of oral epithelium from hyperkeratosis to dysplasia and carcinoma

    Get PDF
    In the present study, epithelium derived lesions of various pathological manifestations were examined histologically and immunohistochemically for mononuclear cell infiltration. The infiltrate under the transformed epithelium of oral lesions, was examined for differences in the composition of immune mononuclear cells as the epithelium moves from hyperkeratosis through various degrees of dysplasia to squamous cell carcinoma. The study was performed on 53 human tongue tissues diagnosed as hyperkeratosis (11 cases), mild dysplasia (nine cases), moderate and severe dysplasia (14 cases) and squamous cell carcinoma (19 cases). A similar analysis was performed on 30 parotid gland tissues diagnosed as pleomorphic adenoma (14 cases) and carcinoma ex-pleomorphic adenoma (16 cases). Immunohistochemical analysis of various surface markers of the tumour infiltrating immune cells was performed and correlated with the transformation level as defined by morphology and the expression of p53 in the epithelium. The results revealed that, in the tongue lesions, the changes in the epithelium from normal appearance to transformed were accompanied by a corresponding increase in the infiltration of CD4, CD8, CD14, CD19+20, and HLA/DR positive cells. The most significant change was an increase in B lymphocytes in tongue lesions, that was in accordance with the transformation level (P<0.001). In the salivary gland, a significant number of cases did not show an infiltrate. In cases where an infiltrate was present, a similar pattern was observed and the more malignant tissues exhibited a higher degree of immune cell infiltration

    The power of comparative and developmental studies for mouse models of Down syndrome

    Get PDF
    Since the genetic basis for Down syndrome (DS) was described, understanding the causative relationship between genes at dosage imbalance and phenotypes associated with DS has been a principal goal of researchers studying trisomy 21 (Ts21). Though inferences to the gene-phenotype relationship in humans have been made, evidence linking a specific gene or region to a particular congenital phenotype has been limited. To further understand the genetic basis for DS phenotypes, mouse models with three copies of human chromosome 21 (Hsa21) orthologs have been developed. Mouse models offer access to every tissue at each stage of development, opportunity to manipulate genetic content, and ability to precisely quantify phenotypes. Numerous approaches to recreate trisomic composition and analyze phenotypes similar to DS have resulted in diverse trisomic mouse models. A murine intraspecies comparative analysis of different genetic models of Ts21 and specific DS phenotypes reveals the complexity of trisomy and important considerations to understand the etiology of and strategies for amelioration or prevention of trisomic phenotypes. By analyzing individual phenotypes in different mouse models throughout development, such as neurologic, craniofacial, and cardiovascular abnormalities, greater insight into the gene-phenotype relationship has been demonstrated. In this review we discuss how phenotype-based comparisons between DS mouse models have been useful in analyzing the relationship of trisomy and DS phenotypes

    Sh3pxd2b Mice Are a Model for Craniofacial Dysmorphology and Otitis Media

    Get PDF
    Craniofacial defects that occur through gene mutation during development increase vulnerability to eustachian tube dysfunction. These defects can lead to an increased incidence of otitis media. We examined the effects of a mutation in the Sh3pxd2b gene (Sh3pxd2bnee) on the progression of otitis media and hearing impairment at various developmental stages. We found that all mice that had the Sh3pxd2bnee mutation went on to develop craniofacial dysmorphologies and subsequently otitis media, by as early as 11 days of age. We found noteworthy changes in cilia and goblet cells of the middle ear mucosa in Sh3pxd2bnee mutant mice using scanning electronic microscopy. By measuring craniofacial dimensions, we determined for the first time in an animal model that this mouse has altered eustachian tube morphology consistent with a more horizontal position of the eustachian tube. All mutants were found to have hearing impairment. Expression of TNF-α and TLR2, which correlates with inflammation in otitis media, was up-regulated in the ears of mutant mice when examined by immunohistochemistry and semi-quantitative RT-PCR. The mouse model with a mutation in the Sh3pxd2b gene (Sh3pxd2bnee) mirrors craniofacial dysmorphology and otitis media in humans

    Gene Network Disruptions and Neurogenesis Defects in the Adult Ts1Cje Mouse Model of Down Syndrome

    Get PDF
    Background: Down syndrome (DS) individuals suffer mental retardation with further cognitive decline and early onset Alzheimer's disease. Methodology/Principal Findings: To understand how trisomy 21 causes these neurological abnormalities we investigated changes in gene expression networks combined with a systematic cell lineage analysis of adult neurogenesis using the Ts1Cje mouse model of DS. We demonstrated down regulation of a number of key genes involved in proliferation and cell cycle progression including Mcm7, Brca2, Prim1, Cenpo and Aurka in trisomic neurospheres. We found that trisomy did not affect the number of adult neural stem cells but resulted in reduced numbers of neural progenitors and neuroblasts. Analysis of differentiating adult Ts1Cje neural progenitors showed a severe reduction in numbers of neurons produced with a tendency for less elaborate neurites, whilst the numbers of astrocytes was increased. Conclusions/Significance: We have shown that trisomy affects a number of elements of adult neurogenesis likely to result in a progressive pathogenesis and consequently providing the potential for the development of therapies to slow progression of, or even ameliorate the neuronal deficits suffered by DS individuals.Chelsee A. Hewitt, King-Hwa Ling, Tobias D. Merson, Ken M. Simpson, Matthew E. Ritchie, Sarah L. King, Melanie A. Pritchard, Gordon K. Smyth, Tim Thomas, Hamish S. Scott and Anne K. Vos
    corecore