358 research outputs found

    Generation of theta rhythm in medial entorhinal cortex of freely moving rats

    Full text link
    A regular slow wave theta rhythm can be recorded in the medial entorhinal cortex (MEC) of freely moving rats during voluntary behaviors and paradoxical sleep. Electrode penetrations normal to the cortical layers proceeding from the deeper to the more superficial layers reveal a continuous theta rhythm in layers IV-III (deep MEC theta rhythm) with an amplitude maximum in layer III, a null between the outer one-third of layer III and the inner one-half of layer I, and a continuous phase-reversed theta rhythm in layers II-I (superficial MEC theta rhythm) with an amplitude maximum there. Deep MEC theta rhythm is similar in phase and wave shape to CA1 theta rhythm; superficial MEC theta rhythm is similar in phase to DG theta rhythm. Laminar profiles throughout MEC show that the theta rhythm is generated there; it is not volume conducted from hippocampus.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/23244/1/0000177.pd

    Extreme salinity as a challenge to grow potatoes under Mars-like soil conditions: targeting promising genotypes.

    Get PDF
    One of the future challenges to produce food in a Mars environment will be the optimization of resources through the potential use of the Martian substratum for growing crops as a part of bioregenerative food systems. In vitro plantlets from 65 potato genotypes were rooted in peat-pellets substratum and transplanted in pots filled with Mars-like soil from La Joya desert in Southern Peru. The Mars-like soil was characterized by extreme salinity (an electric conductivity of 19.3 and 52.6 dS m−1 under 1 : 1 and saturation extract of the soil solution, respectively) and plants grown in it were under sub-optimum physiological status indicated by average maximum stomatal conductance <50 mmol H2O m−2 s−1 even after irrigation. 40% of the genotypes survived and yielded (0.3–5.2 g tuber plant−1) where CIP.397099.4, CIP.396311.1 and CIP.390478.9 were targeted as promising materials with 9.3, 8.9 and 5.8% of fresh tuber yield in relation to the control conditions. A combination of appropriate genotypes and soil management will be crucial to withstand extreme salinity, a problem also important in agriculture on Earth that requires more detailed follow-up studies

    Nurses\u27 Alumnae Association Bulletin - Volume 7 Number 11

    Get PDF
    Anna M. Shafer Barton Memorial Division Births Changes in the Ophthalmology Division Change of Address Clara Melville Fund Continental Tour Deceased Digest of Meetings Inter-County Hospitalization Plan Katherine Childs\u27 Letter Lost Members Marriages Miscellaneous Nursing Home Committee\u27s Report Physical Advantages President James L. Kauffman\u27s Letter President\u27s Greeting Private Duty Section Prizes Relief Fund School Nursing Silhouette of a Public Health Nurse Rooming-in of Infant with Mother Staff Activities The Student White Haven Divisio

    Nurses Alumni Association Bulletin, Fall 1994

    Get PDF
    1994-1995 Meeting Dates Calendar 1995 Annual Luncheon - Meeting Notice Officers and Committee Chairs Bulletin Publication Committee 1994-1995 Meeting Dates Calendar The President\u27s Message Treasurer\u27s Report News About Our Graduates Fiftieth Anniversary Resume of Minutes of Alumni Association Meetings Department of Nursing 1993-1994 Alumni Office News Jefferson 2000 Fund The Women\u27s Center for Health Promotion Discount Parking for Alumni Cadet Nurse Corps Medical Anecdotes of Faith Ukranian-American Teacher Exchange Happy Birthday Committee Reports In Memoriam, Names of Deceased Graduates Luncheon Photos Class News Jefferson Alumni Identification Card Relief Fund Application Scholarship Application Membership Application Pins, Transcripts, Class Address Lists, Change of address Forms Campus Ma

    Human spatial representation: what we cannot learn from the studies of rodent navigation

    Get PDF
    Studies of human and rodent navigation often reveal a remarkable cross-species similarity between the cognitive and neural mechanisms of navigation. Such cross-species resemblance often overshadows some critical differences between how humans and nonhuman animals navigate. In this review, I first argued that a navigation system requires both a storage system (i.e., representing spatial information) and a positioning system (i.e., sensing spatial information) to operate. I then argued that the way humans represent spatial information is different from that inferred from the cellular activity observed during rodent navigation. Such difference spans the whole hierarchy of spatial representation, from representing the structure of environment to the representation of sub-regions of an environment, routes and paths, and the distance and direction relative to a goal location. These cross-species inconsistencies suggested that what we learned from rodent navigation does not always transferable to human navigation. Finally, I argue for closing the loop for the dominant, unidirectional animal-to-human approach in navigation research, so that insights from behavioral studies of human navigation may also flow back to shed light on the cellular mechanisms of navigation for both humans and other mammals (i.e., a human-to-animal approach)

    Solving Navigational Uncertainty Using Grid Cells on Robots

    Get PDF
    To successfully navigate their habitats, many mammals use a combination of two mechanisms, path integration and calibration using landmarks, which together enable them to estimate their location and orientation, or pose. In large natural environments, both these mechanisms are characterized by uncertainty: the path integration process is subject to the accumulation of error, while landmark calibration is limited by perceptual ambiguity. It remains unclear how animals form coherent spatial representations in the presence of such uncertainty. Navigation research using robots has determined that uncertainty can be effectively addressed by maintaining multiple probabilistic estimates of a robot's pose. Here we show how conjunctive grid cells in dorsocaudal medial entorhinal cortex (dMEC) may maintain multiple estimates of pose using a brain-based robot navigation system known as RatSLAM. Based both on rodent spatially-responsive cells and functional engineering principles, the cells at the core of the RatSLAM computational model have similar characteristics to rodent grid cells, which we demonstrate by replicating the seminal Moser experiments. We apply the RatSLAM model to a new experimental paradigm designed to examine the responses of a robot or animal in the presence of perceptual ambiguity. Our computational approach enables us to observe short-term population coding of multiple location hypotheses, a phenomenon which would not be easily observable in rodent recordings. We present behavioral and neural evidence demonstrating that the conjunctive grid cells maintain and propagate multiple estimates of pose, enabling the correct pose estimate to be resolved over time even without uniquely identifying cues. While recent research has focused on the grid-like firing characteristics, accuracy and representational capacity of grid cells, our results identify a possible critical and unique role for conjunctive grid cells in filtering sensory uncertainty. We anticipate our study to be a starting point for animal experiments that test navigation in perceptually ambiguous environments
    • …
    corecore