308 research outputs found

    Targeted Sorting of Single Virus-Infected Cells of the Coccolithophore Emiliania huxleyi

    Get PDF
    Discriminating infected from healthy cells is the first step to understanding the mechanisms and ecological implications of viral infection. We have developed a method for detecting, sorting, and performing molecular analysis of individual, infected cells of the important microalga Emiliania huxleyi, based on known physiological responses to viral infection. Of three fluorescent dyes tested, FM 1-43 (for detecting membrane blebbing) gave the most unequivocal and earliest separation of cells. Furthermore, we were able to amplify the genomes of single infected cells using Multiple Displacement Amplification. This novel method to reliably discriminate infected from healthy cells in cultures will allow researchers to answer numerous questions regarding the mechanisms and implications of viral infection of E. huxleyi. The method may be transferable to other virus-host systems

    Hiding in plain sight: the globally distributed bacterial candidate phylum PAUC34f

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chen, M. L., Becraft, E. D., Pachiadaki, M., Brown, J. M., Jarett, J. K., Gasol, J. M., Ravin, N. V., Moser, D. P., Nunoura, T., Herndl, G. J., Woyke, T., & Stepanauskas, R. Hiding in plain sight: the globally distributed bacterial candidate phylum PAUC34f. Frontiers in Microbiology, 11, (2020): 376, doi: 10.3389/fmicb.2020.00376.Bacterial candidate phylum PAUC34f was originally discovered in marine sponges and is widely considered to be composed of sponge symbionts. Here, we report 21 single amplified genomes (SAGs) of PAUC34f from a variety of environments, including the dark ocean, lake sediments, and a terrestrial aquifer. The diverse origins of the SAGs and the results of metagenome fragment recruitment suggest that some PAUC34f lineages represent relatively abundant, free-living cells in environments other than sponge microbiomes, including the deep ocean. Both phylogenetic and biogeographic patterns, as well as genome content analyses suggest that PAUC34f associations with hosts evolved independently multiple times, while free-living lineages of PAUC34f are distinct and relatively abundant in a wide range of environments.This work was funded by the United States National Science Foundation grants 1460861 (REU site at Bigelow Laboratory for Ocean Sciences), 1441717, 1335810, and 1232982 to RS, and the Simons Foundation (Life Sciences Project Award ID 510023) to RS. NR was supported by the Ministry of Science and Higher Education of Russia. GH was supported by the Austrian Science Fund (FWF) project ARTEMIS (P28781-B21) and the European Research Council under the European Community’s Seventh Framework Program (FP7/2007-2013)/ERC (Grant Agreement No. 268595). JG was supported by Spanish project RTI2018-101025-B-I00. TW and JJ were funded by the U.S. Department of Energy, Joint Genome Institute, a DOE Office of Science User Facility supported under Contract No. DE-AC02-05CH11231

    Phosphonate production by marine microbes: exploring new sources and potential function

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Acker, M., Hogle, S. L., Berube, P. M., Hackl, T., Coe, A., Stepanauskas, R., Chisholm, S. W., & Repeta, D. J. Phosphonate production by marine microbes: exploring new sources and potential function. Proceedings of the National Academy of Sciences of the United States of America, 119(11), (2022): e2113386119, https://doi.org/10.1073/pnas.2113386119.Phosphonates are organophosphorus metabolites with a characteristic C-P bond. They are ubiquitous in the marine environment, their degradation broadly supports ecosystem productivity, and they are key components of the marine phosphorus (P) cycle. However, the microbial producers that sustain the large oceanic inventory of phosphonates as well as the physiological and ecological roles of phosphonates are enigmatic. Here, we show that phosphonate synthesis genes are rare but widely distributed among diverse bacteria and archaea, including Prochlorococcus and SAR11, the two major groups of bacteria in the ocean. In addition, we show that Prochlorococcus can allocate over 40% of its total cellular P-quota toward phosphonate production. However, we find no evidence that Prochlorococcus uses phosphonates for surplus P storage, and nearly all producer genomes lack the genes necessary to degrade and assimilate phosphonates. Instead, we postulate that phosphonates are associated with cell-surface glycoproteins, suggesting that phosphonates mediate ecological interactions between the cell and its surrounding environment. Our findings indicate that the oligotrophic surface ocean phosphonate pool is sustained by a relatively small fraction of the bacterioplankton cells allocating a significant portion of their P quotas toward secondary metabolism and away from growth and reproduction.This work was supported in part by grants from the NSF (OCE-1153588 and DBI-0424599 to S.W.C.; OCE-1335810 and OIA-1826734 to R.S.; and OCE-1634080 to D.J.R.), the Gordon and Betty Moore Foundation (no. 6000 to D.J.R.), and the Simons Foundation (Life Sciences Project Award IDs 337262 and 647135 to S.W.C.; 510023 to R.S.; and Simons Collaboration on Ocean Processes and Ecology [SCOPE] Award ID 329108 to S.W.C. and D.J.R.)

    The Infrared Imaging Spectrograph (IRIS) for TMT: Multi-tiered wavefront measurements and novel mechanical design

    Get PDF
    The InfraRed Imaging Spectrograph (IRIS) will be the first light adaptive optics instrument on the Thirty Meter Telescope (TMT). IRIS is being built by a collaboration between Caltech, the University of California, NAOJ and NRC Herzberg. In this paper we present novel aspects of the Support Structure, Rotator and On-Instrument Wavefront Sensor systems being developed at NRC Herzberg. IRIS is suspended from the bottom port of the Narrow Field Infrared Adaptive Optics System (NFIRAOS), and provides its own image de-rotation to compensate for sidereal rotation of the focal plane. This arrangement is a challenge because NFIRAOS is designed to host two other science instruments, which imposes strict mass requirements on IRIS. As the mechanical design of all elements has progressed, we have been tasked with keeping the instrument mass under seven tonnes. This requirement has resulted in a mass reduction of 30 percent for the support structure and rotator compared to the most recent IRIS designs. To accomplish this goal, while still being able to withstand earthquakes, we developed a new design with composite materials. As IRIS is a client instrument of NFIRAOS, it benefits from NFIRAOS’s superior AO correction. IRIS plays an important role in providing this correction by sensing low-order aberrations with three On-Instrument Wavefront Sensors (OIWFS). The OIWFS consists of three independently positioned natural guide star wavefront sensor probe arms that patrol a 2-arcminute field of view. We expect tip-tilt measurements from faint stars within the IRIS imager focal plane will further stabilize the delivered image quality. We describe how the use of On-Detector Guide Windows (ODGWs) in the IRIS imaging detector can be incorporated into the AO correction. In this paper, we present our strategies for acquiring and tracking sources with this complex AO system, and for mitigating and measuring the various potential sources of image blur and misalignment due to properties of the mechanical structure and interface

    Hiding in plain sight: The globally distributed bacterial candidate phylum PAUC34f

    Get PDF
    Bacterial candidate phylum PAUC34f was originally discovered in marine sponges and is widely considered to be composed of sponge symbionts. Here, we report 21 single amplified genomes (SAGs) of PAUC34f from a variety of environments, including the dark ocean, lake sediments, and a terrestrial aquifer. The diverse origins of the SAGs and the results of metagenome fragment recruitment suggest that some PAUC34f lineages represent relatively abundant, free-living cells in environments other than sponge microbiomes, including the deep ocean. Both phylogenetic and biogeographic patterns, as well as genome content analyses suggest that PAUC34f associations with hosts evolved independently multiple times, while free-living lineages of PAUC34f are distinct and relatively abundant in a wide range of environments. © Copyright © 2020 Chen, Becraft, Pachiadaki, Brown, Jarett, Gasol, Ravin, Moser, Nunoura, Herndl, Woyke and Stepanauskas

    Phosphonate production by marine microbes: Exploring new sources and potential function

    Get PDF
    Phosphonates are organophosphorus metabolites with a characteristic C-P bond. They are ubiquitous in the marine environment, their degradation broadly supports ecosystem productivity, and they are key components of the marine phosphorus (P) cycle. However, the microbial producers that sustain the large oceanic inventory of phosphonates as well as the physiological and ecological roles of phosphonates are enigmatic. Here, we show that phosphonate synthesis genes are rare but widely distributed among diverse bacteria and archaea, including Prochlorococcus and SAR11, the two major groups of bacteria in the ocean. In addition, we show that Prochlorococcus can allocate over 40% of its total cellular P-quota toward phosphonate production. However, we find no evidence that Prochlorococcus uses phosphonates for surplus P storage, and nearly all producer genomes lack the genes necessary to degrade and assimilate phosphonates. Instead, we postulate that phosphonates are associated with cell-surface glycoproteins, suggesting that phosphonates mediate ecological interactions between the cell and its surrounding environment. Our findings indicate that the oligotrophic surface ocean phosphonate pool is sustained by a relatively small fraction of the bacterioplankton cells allocating a significant portion of their P quotas toward secondary metabolism and away from growth and reproduction.</p

    Interplay between autotrophic and heterotrophic prokaryotic metabolism in the bathypelagic realm revealed by metatranscriptomic analyses

    Get PDF
    Heterotrophic microbes inhabiting the dark ocean largely depend on the settling of organic matter from the sunlit ocean. However, this sinking of organic materials is insufficient to cover their demand for energy and alternative sources such as chemoautotrophy have been proposed. Reduced sulfur compounds, such as thiosulfate, are a potential energy source for both auto- and heterotrophic marine prokaryotes
    corecore