8,742 research outputs found

    High Gain Amplifier with Enhanced Cascoded Compensation

    Get PDF
    A two-stage CMOS operational amplifier with both, gain-boosting and indirect current feedback frequency compensation performed by means of regulated cascode amplifiers, is presented. By using quasi-floating-gate transistors (QFGT) the supply requirements, the number of capacitors and the size of the compensation capacitors respect to other Miller schemes are reduced. A prototype was fabricated using a 0.5 μm technology, resulting, for a load of 45 pF and supply voltage of 1.65 V, in open-loop-gain of 129 dB, 23 MHz of gain-bandwidth product, 60o phase margin, 675 μW power consumption and 1% settling time of 28 ns

    Ultra Low-Power Analog Median Filters

    Get PDF
    The design and implementation of three analog median filter topologies, whose transistors operate in the deep weak-inversion region, is described. The first topology is a differential pairs array, in which drain currents are driven into two nodes in a differential fashion, while the second topology is based on a wide range OTA, which is used to maximize the dynamic range. Finally, the third topology uses three range-extended OTAs. The proposed weak-inversion filters were designed and fabricated in ON Semiconductor 0.5 micrometer technology through MOSIS. Experimental results of three-input fabricated prototypes for all three topologies are show, where power consumptions of 90nW in the first case, and 270nW in the other two cases can be noticed. A dual power supply +/-1.5 Volts were used

    A radio and infrared exploration of the Cygnus X-3 environments

    Full text link
    To confirm, or rule out, the possible hot spot nature of two previously detected radio sources in the vicinity of the Cygnus X-3 microquasar. We present the results of a radio and near infrared exploration of the several arc-minute field around the well known galactic relativistic jet source Cygnus X-3 using the Very Large Array and the Calar Alto 3.5~m telescope. The data this paper is based on do not presently support the hot spot hypothesis. Instead, our new observations suggest that these sources are most likely background or foreground objects. Actually, none of them appears to be even barely extended as would be expected if they were part of a bow shock structure. Our near infrared observations also include a search for extended emission in the Bracket γ\gamma (2.166 μ\mum) and H2H_{2} (2.122 μ\mum) lines as possible tracers of shocked gas in the Cygnus X-3 surroundings. The results were similarly negative and the corresponding upper limits are reported.Comment: Accepted for publication in A&A; 5 pages, 4 figure

    Chandra X-ray counterpart of KS 1741-293

    Get PDF
    We aim to investigate the nature of the high energy source KS 1741-293 by revisiting the radio and infrared associations proposed in the early 1990s. Our work is mostly based on the analysis of modern survey and archive data, including the NRAO, MSX, 2MASS and Chandra archives, and catalogues. We also have obtained deep CCD optical observations by ourselves. The coincidence of KS 1741-293 with an extended radio and far-infrared source, tentatively suggested in 1994, is no longer supported by modern observational data. Instead, a Chandra source is the only peculiar object found to be consistent with all high-energy error circles of KS 1741-293 and we propose it to be its most likely X-ray counterpart. We also report the existence of a non-thermal radio nebula in the vicinity of the KS 1741-293 position with the appearance of a supernova remnant. The possibility of being associated to this X-ray binary is discussed.Comment: 5 pages, 4 figures, 2 tables. Accepted for publication in Astronomy & Astrophysic

    ESR study of the single-ion anisotropy in the pyrochlore antiferromagnet Gd2Sn2O7

    Full text link
    Single-ion anisotropy is of importance for the magnetic ordering of the frustrated pyrochlore antiferromagnets Gd2Ti2O7 and Gd2Sn2O7. The anisotropy parameters for the Gd2Sn2O7 were measured using the electron spin resonance (ESR) technique. The anisotropy was found to be of the easy plane type, with the main constant D=140mK. This value is 35% smaller than the value of the corresponding anisotropy constant in the related compound Gd2Ti2O7.Comment: 8 pages, 3 figure

    Measurement driven quantum evolution

    Full text link
    We study the problem of mapping an unknown mixed quantum state onto a known pure state without the use of unitary transformations. This is achieved with the help of sequential measurements of two non-commuting observables only. We show that the overall success probability is maximized in the case of measuring two observables whose eigenstates define mutually unbiased bases. We find that for this optimal case the success probability quickly converges to unity as the number of measurement processes increases and that it is almost independent of the initial state. In particular, we show that to guarantee a success probability close to one the number of consecutive measurements must be larger than the dimension of the Hilbert space. We connect these results to quantum copying, quantum deleting and entanglement generation.Comment: 7 pages, 1 figur

    Voltage dip generator for testing wind turbines connected to electrical networks

    Get PDF
    This paper describes a new voltage dip generator that allows the shape of the time profile of the voltage generated to be configured. The use of this device as a tool to test the fault ride-through capability of wind turbines connected to the electricity grid can provide some remarkable benefits: First, this system offers the possibility of adapting the main features of the time–voltage profile generated (dip depth, dip duration, the ramp slope during the recovery process after clearing fault, etc.) to the specific requirements set forth by the grid operation codes, in accordance with different network electrical systems standards. Second, another remarkable ability of this system is to provide sinusoidal voltage and current wave forms during the overall testing process without the presence of harmonic components. This is made possible by the absence of electronic converters. Finally, the paper includes results and a discussion on the experimental data obtained with the use of a reduced size laboratory prototype that was constructed to validate the operating features of this new device
    corecore