48,014 research outputs found
Chemical signatures of planets: beyond solar-twins
Elemental abundance studies of solar twin stars suggest that the solar
chemical composition contains signatures of the formation of terrestrial
planets in the solar system, namely small but significant depletions of the
refractory elements. To test this hypothesis, we study stars which, compared to
solar twins, have less massive convective envelopes (therefore increasing the
amplitude of the predicted effect) or are, arguably, more likely to host
planets (thus increasing the frequency of signature detections). We measure
relative atmospheric parameters and elemental abundances of a late-F type dwarf
sample (52 stars) and a sample of metal-rich solar analogs (59 stars). We
detect refractory-element depletions with amplitudes up to about 0.15 dex. The
distribution of depletion amplitudes for stars known to host gas giant planets
is not different from that of the rest of stars. The maximum amplitude of
depletion increases with effective temperature from 5650 K to 5950 K, while it
appears to be constant for warmer stars (up to 6300 K). The depletions observed
in solar twin stars have a maximum amplitude that is very similar to that seen
here for both of our samples. Gas giant planet formation alone cannot explain
the observed distributions of refractory-element depletions, leaving the
formation of rocky material as a more likely explanation of our observations.
More rocky material is necessary to explain the data of solar twins than
metal-rich stars, and less for warm stars. However, the sizes of the stars'
convective envelopes at the time of planet formation could be regulating these
amplitudes. Our results could be explained if disk lifetimes were shorter in
more massive stars, as independent observations indeed seem to suggest.Comment: Astronomy and Astrophysics, in press. Full tables available in the
source downloa
The quantitative measure and statistical distribution of fame
Fame and celebrity play an ever-increasing role in our culture. However,
despite the cultural and economic importance of fame and its gradations, there
exists no consensus method for quantifying the fame of an individual, or of
comparing that of two individuals. We argue that, even if fame is difficult to
measure with precision, one may develop useful metrics for fame that correlate
well with intuition and that remain reasonably stable over time. Using datasets
of recently deceased individuals who were highly renowned, we have evaluated
several internet-based methods for quantifying fame. We find that some
widely-used internet-derived metrics, such as search engine results, correlate
poorly with human subject judgments of fame. However other metrics exist that
agree well with human judgments and appear to offer workable, easily accessible
measures of fame. Using such a metric we perform a preliminary investigation of
the statistical distribution of fame, which has some of the power law character
seen in other natural and social phenomena such as landslides and market
crashes. In order to demonstrate how such findings can generate quantitative
insight into celebrity culture, we assess some folk ideas regarding the
frequency distribution and apparent clustering of celebrity deaths.Comment: 17 pages, 6 figure
The effect of radiative gravitational modes on the dynamics of a cylindrical shell of counter rotating particles
In this paper we consider some aspects of the relativistic dynamics of a
cylindrical shell of counter rotating particles. In some sense these are the
simplest systems with a physically acceptable matter content that display in a
well defined sense an interaction with the radiative modes of the gravitational
field. These systems have been analyzed previously, but in most cases resorting
to approximations, or considering a particular form for the initial value data.
Here we show that there exists a family of solutions where the space time
inside the shell is flat and the equation of motion of the shell decouples
completely from the gravitational modes. The motion of the shell is governed by
an equation of the same form as that of a particle in a time independent one
dimensional potential. We find that under appropriate initial conditions one
can have collapsing, bounded periodic, and unbounded motions. We analyze and
solve also the linearized equations that describe the dynamics of the system
near a stable static solutions, keeping a regular interior. The surprising
result here is that the motion of the shell is completely determined by the
configuration of the radiative modes of the gravitational field. In particular,
there are oscillating solutions for any chosen period, in contrast with the
"approximately Newtonian plus small radiative corrections" motion expectation.
We comment on the physical meaning of these results and provide some explicit
examples. We also discuss the relation of our results to the initial value
problem for the linearized dynamics of the shell
Finite Element Analysis of an Arbitrary Lagrangian–Eulerian Method for Stokes/Parabolic Moving Interface Problem With Jump Coefficients
In this paper, a type of arbitrary Lagrangian–Eulerian (ALE) finite element method in the monolithic frame is developed for a linearized fluid–structure interaction (FSI) problem — an unsteady Stokes/parabolic interface problem with jump coefficients and moving interface, where, the corresponding mixed finite element approximation in both semi- and fully discrete scheme are developed and analyzed based upon one type of ALE formulation and a novel H1- projection technique associated with a moving interface problem, and the stability and optimal convergence properties in the energy norm are obtained for both discretizations to approximate the solution of a transient Stokes/parabolic interface problem that is equipped with a low regularity. Numerical experiments further validate all theoretical results. The developed analytical approaches and numerical implementations can be similarly extended to a realistic FSI problem in the future
Search for the Higgs Boson at LHC in 3-3-1 Model
We present an analysis of production and signature of neutral Higgs boson
() on the version of the 3-3-1 model containing heavy leptons at the
Large Hadron Collider. We studied the possibility to identify it using the
respective branching ratios. Cross section are given for the collider energy,
14 TeV. Event rates and significances are discussed for two
possible values of integrated luminosity, 300 fb and 3000 fb.Comment: 17 pages 7 figures. arXiv admin note: substantial text overlap with
arXiv:1205.404
Selection of the Argentine indicator region
Determined from available Argentine crop statistics, selection of the Indicator Region was based on the highest wheat, corn, and soybean producing provinces, which were: Buenos Aires, Cordoba, Entre Rios, and Santa Fe. Each province in Argentina was examined for the availability of LANDSAT data; area, yield and production statistics; crop calendars; and other ancillary data. The Argentine Indicator Region is described
- …
