410 research outputs found

    Shock Consolidation of Powders – Theory and Experiment

    Get PDF
    A recently proposed model of shock consolidation of powders quantitatively predicts regimes of input energy and shock duration required to produce well-bonded compacts. A growing data base from shock experiments in which the shock wave and powder parameters of importance are controlled allows evaluation of the model. Rapidly solidified crystalline AISI 9310, and microcrystalline Markomet 3.11, as well as amorphous Markomet 1064 and crystalline Mo powders, have been consolidated by shocks up to 2 μsec duration. The formation of amorphous layers on Marko 3.11 particle surfaces indicates that surface melting and rapid solidification occurred. Decreasing amounts of amorphous structure are retained in Marko 3.11 and 1064 powder compacts with increasing shock energies. Significant improvement in Mo particle bonding is achieved by reducing surface oxides prior to shock consolidation

    Global Governance Behind Closed Doors : The IMF Boardroom, the Enhanced Structural Adjustment Facility, and the Intersection of Material Power and Norm Change in Global Politics

    Get PDF
    Up on the 12th floor of its 19th Street Headquarters, the IMF Board sits in active session for an average of 7 hours per week. Although key matters of policy are decided on in the venue, the rules governing Boardroom interactions remain opaque, resting on an uneasy combination of consensual decision-making and weighted voting. Through a detailed analysis of IMF Board discussions surrounding the Enhanced Structural Adjustment Facility (ESAF), this article sheds light on the mechanics of power in this often overlooked venue of global economic governance. By exploring the key issues of default liability and loan conditionality, I demonstrate that whilst the Boardroom is a more active site of contestation than has hitherto been recognized, material power is a prime determinant of both Executive Directors’ preferences and outcomes reached from discussions. And as the decisions reached form the backbone of the ‘instruction sheet’ used by Fund staff to guide their everyday operational decisions, these outcomes—and the processes through which they were reached—were factors of primary importance in stabilizing the operational norms at the heart of a controversial phase in the contemporary history of IMF concessional lending

    Optimizing end-labeled free-solution electrophoresis by increasing the hydrodynamic friction of the drag-tag

    Full text link
    We study the electrophoretic separation of polyelectrolytes of varying lengths by means of end-labeled free-solution electrophoresis (ELFSE). A coarse-grained molecular dynamics simulation model, using full electrostatic interactions and a mesoscopic Lattice Boltzmann fluid to account for hydrodynamic interactions, is used to characterize the drag coefficients of different label types: linear and branched polymeric labels, as well as transiently bound micelles. It is specifically shown that the label's drag coefficient is determined by its hydrodynamic size, and that the drag per label monomer is largest for linear labels. However, the addition of side chains to a linear label offers the possibility to increase the hydrodynamic size, and therefore the label efficiency, without having to increase the linear length of the label, thereby simplifying synthesis. The third class of labels investigated, transiently bound micelles, seems very promising for the usage in ELFSE, as they provide a significant higher hydrodynamic drag than the other label types. The results are compared to theoretical predictions, and we investigate how the efficiency of the ELFSE method can be improved by using smartly designed drag-tags.Comment: 32 pages, 11 figures, submitted to Macromolecule

    A new conceptual framework for revenge firesetting

    Get PDF
    Revenge has frequently been acknowledged to account for a relatively large proportion of motives in deliberate firesetting. However, very little is actually known about the aetiology of revenge firesetting. Theoretical approaches to revenge-seeking behaviour are discussed. A brief review of how revenge is accounted for in existing theoretical explanations of deliberate firesetting and the known characteristics of revenge firesetters are provided. On this basis, the authors suggest, as a motive, revenge firesetting has to date been misconceptualised. A new conceptual framework is thus proposed, paying particular attention to the contextual, affective, cognitive, volitional and behavioural factors which may influence and generate a single episode of revenge firesetting. Treatment implications and suggestions for future research are also provided

    Systems analysis of bioenergetics and growth of the extreme halophile Halobacterium salinarum

    Get PDF
    Halobacterium salinarum is a bioenergetically flexible, halophilic microorganism that can generate energy by respiration, photosynthesis, and the fermentation of arginine. In a previous study, using a genome-scale metabolic model, we have shown that the archaeon unexpectedly degrades essential amino acids under aerobic conditions, a behavior that can lead to the termination of growth earlier than necessary. Here, we further integratively investigate energy generation, nutrient utilization, and biomass production using an extended methodology that accounts for dynamically changing transport patterns, including those that arise from interactions among the supplied metabolites. Moreover, we widen the scope of our analysis to include phototrophic conditions to explore the interplay between different bioenergetic modes. Surprisingly, we found that cells also degrade essential amino acids even during phototropy, when energy should already be abundant. We also found that under both conditions considerable amounts of nutrients that were taken up were neither incorporated into the biomass nor used as respiratory substrates, implying the considerable production and accumulation of several metabolites in the medium. Some of these are likely the products of forms of overflow metabolism. In addition, our results also show that arginine fermentation, contrary to what is typically assumed, occurs simultaneously with respiration and photosynthesis and can contribute energy in levels that are comparable to the primary bioenergetic modes, if not more. These findings portray a picture that the organism takes an approach toward growth that favors the here and now, even at the cost of longer-term concerns. We believe that the seemingly "greedy" behavior exhibited actually consists of adaptations by the organism to its natural environments, where nutrients are not only irregularly available but may altogether be absent for extended periods that may span several years. Such a setting probably predisposed the cells to grow as much as possible when the conditions become favorable

    The determinants of election to the United Nations Security Council

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s11127-013-0096-4.The United Nations Security Council (UNSC) is the foremost international body responsible for the maintenance of international peace and security. Members vote on issues of global importance and consequently receive perks—election to the UNSC predicts, for instance, World Bank and IMF loans. But who gets elected to the UNSC? Addressing this question empirically is not straightforward as it requires a model that allows for discrete choices at the regional and international levels; the former nominates candidates while the latter ratifies them. Using an original multiple discrete choice model to analyze a dataset of 180 elections from 1970 to 2005, we find that UNSC election appears to derive from a compromise between the demands of populous countries to win election more frequently and a norm of giving each country its turn. We also find evidence that richer countries from the developing world win election more often, while involvement in warfare lowers election probability. By contrast, development aid does not predict election

    Using light scattering to evaluate the separation of polydisperse nanoparticles

    Get PDF
    Appendix A Supplementary data The following are the supplementary data related to this article: Download Appendix A Supplementary data Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.aca.2015.06.027. Abstract The analysis of natural and otherwise complex samples is challenging and yields uncertainty about the accuracy and precision of measurements. Here we present a practical tool to assess relative accuracy among separation protocols for techniques using light scattering detection. Due to the highly non-linear relationship between particle size and the intensity of scattered light, a few large particles may obfuscate greater numbers of small particles. Therefore, insufficiently separated mixtures may result in an overestimate of the average measured particle size. Complete separation of complex samples is needed to mitigate this challenge. A separation protocol can be considered improved if the average measured size is smaller than a previous separation protocol. Further, the protocol resulting in the smallest average measured particle size yields the best separation among those explored. If the differential in average measured size between protocols is less than the measurement uncertainty, then the selected protocols are of equivalent precision. As a demonstration, this assessment metric is applied to optimization of cross flow (V x ) protocols in asymmetric flow field flow fractionation (AF4) separation interfaced with online quasi-elastic light scattering (QELS) detection using mixtures of polystyrene beads spanning a large size range. Using this assessment metric, the V x parameter was modulated to improve separation until the average measured size of the mixture was in statistical agreement with the calculated average size of particles in the mixture. While we demonstrate this metric by improving AF4V x protocols, it can be applied to any given separation parameters for separation techniques that employ dynamic light scattering detectors. Graphical abstract Highlights • We present a tool to assess relative accuracy among separation protocols. • This metric can be applied to any techniques using light scattering detection. • An improved separation protocol minimizes the average measured particle size. • A protocol with the smallest average measured particle size is the best separation. • Metric is demonstrated by improving AF4 cross flow protocols for polystyrene beads
    • …
    corecore