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Abstract

The analysis of natural and otherwise complex samples is challenging and yields uncertainty about 

the accuracy and precision of measurements. Here we present a practical tool to assess relative 

accuracy among separation protocols for techniques using light scattering detection. Due to the 

highly non-linear relationship between particle size and the intensity of scattered light, a few large 

particles may obfuscate greater numbers of small particles. Therefore, insufficiently separated 

mixtures may result in an overestimate of the average measured particle size. Complete separation 

of complex samples is needed to mitigate this challenge. A separation protocol can be considered 

improved if the average measured size is smaller than a previous separation protocol. Further, the 

protocol resulting in the smallest average measured particle size yields the best separation among 

those explored. If the differential in average measured size between protocols is less than the 

measurement uncertainty, then the selected protocols are of equivalent precision. As a 

demonstration, this assessment metric is applied to optimization of cross flow (Vx) protocols in 

asymmetric flow field flow fractionation (AF4) separation interfaced with online quasi-elastic light 

scattering (QELS) detection using mixtures of polystyrene beads spanning a large size range. 

Using this assessment metric, the Vx parameter was modulated to improve separation until the 

average measured size of the mixture was in statistical agreement with the calculated average size 

of particles in the mixture. While we demonstrate this metric by improving AF4 Vx protocols, it 
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can be applied to any given separation parameters for separation techniques that employ dynamic 

light scattering detectors.
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1. Introduction

Field flow fractionation (FFF) and specifically, flow field flow fractionation (FlFFF), has 

become one of the most favored methods for separating complex colloidal samples. FlFFF is 

a type of chromatography that does not require the use of a stationary phase and relies on 

hydrodynamic principles to separate particles in an open fluidic channel [1-4]. FlFFF can be 

directly interfaced with a wide variety of standard chromatography detectors, such as multi-

angle light scattering (MALS) for particle sizing, quasi-elastic light scattering (QELS) for 

measuring particle diffusion coefficients, concentration detectors, fluorescence, or 

inductively coupled plasma-mass spectrometry for elemental analysis, among others [5]. 

FlFFF has been applied to particle separation of very small particles, such as humic 

substances in the 1 nm range, natural colloids in the 20 nm - 450 nm range, and larger 

particles, such as clay, in the 5 μm - 100 μm range [3]. FlFFF has been widely applied to 

nanoparticle analysis, such as metals, metal oxides, SiO2, and carbon black. Additionally, it 

has been used to analyze complex sample matrices such as soil suspensions and colloids in 

fresh and marine water samples [6] while simultaneously reducing sample complexity and 

fractionating colloidal materials by size. There is a growing body of literature on how to 

optimize and define AF4 separation parameters for various applications and types of 

nanomaterials, based on theory and experimental parameters that influence AF4 [3, 7-13].

The development of separation techniques operated in tandem with MALS and QELS 

detectors allows for size and molar mass distribution measurements of arbitrary polydisperse 

mixtures of particles and in some cases, information about molecular conformation [14]. 

While the angular dependence of scattered light can provide information about particle size 

as measured by MALS, QELS directly measures the translational diffusion coefficient, and 

computes hydrodynamic radius (Rh) using the Stokes-Einstein equation. When light 

scattering is combined with a nondestructive separation technique that presents the light 

scattering detector with scattering from an essentially monodisperse particle size at each 

measured fraction, the size distribution of the original sample can be calculated [15, 16]. 
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Because the relationship between particle size and scattering intensity is highly non-linear (I 

∝ r6, where I is the scattering intensity and r is the particle radius; light scattering theory has 

been described in detail elsewhere [15-17]), the measured size can be heavily biased to 

being erroneously large in insufficiently separated mixtures. In other words, a few large 

particles may obscure the detection and accurate measurement of much greater numbers of 

small particles. Therefore, obtaining an accurate measurement of a polydisperse distribution 

requires a separation of sufficient resolution, and the optimum separation will result in the 

smallest average size (Figure 1).

Separations of various natural, environmental, biological, or otherwise complex samples are 

less defined and contain a higher level of variability [14, 18-20] when compared to the 

separations of mixtures of monodisperse or distinct particle sizes. Currently, to our 

knowledge, there is no metric to establish whether the separation optimization is complete 

and the separation is the best possible given the available experimental conditions. 

Experience and FFF theory can provide tools for choosing separation conditions based on a 

certain range of particle sizes. However, in the case of unknown or complex mixtures 

spanning a large size range, these conditions may be much less obvious. Similarly, 

extremely polydisperse mixtures, such as environmental or natural samples, may not yield 

sufficient resolution between sample components to judge separation quality by observing 

the raw data in fractograms alone. Therefore, the analysis of a single separation and its data 

may not provide adequate information about the accuracy of the measurement. Thus, a 

rigorous characterization requires multiple separation protocols and comparison among 

them.

To address the challenges described above, we compare the average measured particle size 

for a distribution of particles with various separation parameters, and demonstrate that the 

best separation possible is obtained when the average size is at a minimum. In this work, the 

separation parameter of cross flow in an AF4-QELS system is used as a simplified example 

to represent changing separation conditions. This separation metric is described and 

subsequently applied to mixtures of polystyrene nanoparticles of several known mean sizes 

to mimic complex mixtures.

2. Materials and Methods1

2.1 Instrumentation

AF4 was performed using an Eclipse DualTec separation module (Wyatt Technologies 

Corp., Santa Barbara CA) with OpenLab CDS Chem Station edition software (Agilent 

Technologies, Santa Clara, CA). Injections were made with an Agilent 1260 Infinity series 

isopump and autosampler with a 900 μL injection loop. The run buffer was degassed by a 

Gastorr TG-14 (Flom USA, San Diego, CA) at 10 kPa directly from solvent bottles, and 

filtered in series by a polytetrafluoroethylene frit (RESTEK Corp., Bellefontane, PA) and a 

0.1 μm Durapore® membrane filter (Millipore Inc., Billerica, MA). Separation was 

1Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure 
adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and 
Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.
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performed with an outlet channel flowrate of 1 mL min-1 and a 1 min focusing time using a 

Wyatt Technologies “short channel” containing a 350 μm spacer and a regenerated cellulose 

ultrafiltration membrane with 5 kDa cutoff (Wyatt Technologies Corp.). AF4 instrumental 

parameters held constant for each protocol are provided in Table 1.

Quasi electric light scattering (QELS) measurements were made with a WyattQELS™ 

detector through a QELS fiber attached to the Wyatt DAWN® II MALS detector at a 

nominal angle of 140° with a 2.0 sec collection interval (Wyatt Technologies Corp.). Multi 

angle light scattering (MALS) measurements were not included in this work. Polystyrene 

samples were prepared in the ammonium nitrate buffer and placed in amber glass vials 

sealed with PTFE/silicone septa (Chemglass Life Sciences, Vineland, NJ). Data were 

collected and analyzed with ASTRA™ Software version 6.1.1.17. ASTRA™ Software 

calculates the Rh using QELS data by measuring the time-dependent fluctuations in 

scattered light. The fluctuations are then directly related to the rate of diffusion of the 

molecule through the solvent, which, in turn, is related to the particles' hydrodynamic radii. 

In this work, the “average Rh” refers to the uncertainty-weighted average, determined in the 

ASTRA software by:

where ri represents the calculated Rh of the ith time slice, and σri is the uncertainty in the 

radius measurement, defined as:

2.2 Materials

The AF4 run buffer was prepared by dissolving ammonium nitrate (Sigma-Aldrich, St. 

Louis, MO) in laboratory-grade 18.2 MΩ·cm water with 0.01% sodium azide (Ricca 

Chemical Company, Arlington, TX) as an antimicrobial. Mixtures of spherical 

Nanosphere™ NIST-traceable polystyrene beads (Thermo Scientific, Waltham, MA) of 

various sizes in laboratory-grade 18.2 MΩ·cm water were prepared. Two mixtures were 

prepared from bead suspensions of known bead size and concentration. Sample 1, prepared 

to represent a mixture containing a large amount of small particles and a small amount of 

large particles, consisted of a mixture of (21 ± 2) nm ([8.25 mg mL-1]), (41 ± 4) nm ([0.47 

mg mL-1]), (57 ± 4) nm ([0.11 mg mL-1]), (81 ± 3) nm ([0.05 mg mL-1]) and (100 ± 3) nm 

([0.03 mg mL-1]) certified diameter beads with manufacturer specified size distribution. 

Sample 2, prepared to simulate polydisperse samples containing low scattering signal from 

small particles and large scattering signal from large particles, consisted of a mixture 

containing spheres of (21 ± 2) nm, (41 ± 4) nm, (57 ± 4) nm, (81 ± 3) nm certified mean 

diameters, each at a particle concentration of 2.7 × 1012 mL-1. Polystyrene bead mean 
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diameters were provided by the supplier and confirmed in-house by both dynamic light 

scattering and AF4-QELS (data not shown).

2.3 Methods

Polystyrene sphere mixtures were separated with a range of low, medium, and high particle 

retention AF4 separation protocols. Cross flow (Vx) for all protocols was ramped down 

linearly from the starting Vx rate to 0 mL min−1 over the period of elution. At a channel flow 

of 1 mL min−1, the maximum Vx allowed with the instrument setup is 2.99 mL min-1. From 

low to high retention, protocols were defined with initial Vx rates of 0.50 mL min-1, 1.00 mL 

min-1, 1.25 mL min-1, 1.50 mL min-1, 1.75 mL min-1, 2.00 mL min-1, 2.25 mL min-1, 2.50 

mL min-1, 2.75 mL min-1, and 2.99 mL min-1, and linearly decreasing the Vx to 0 mL min-1 

over the gradient duration. Duration of the Vx gradient from low to high retention were 10 

min, 20 min, 30 min, 40 min, 50 min, and 60 min. Figure 2 is a graphical representation of 

the initial Vx rate and ramp times for each protocol used in this work. Particle size analysis 

was performed at each data point across the entire elution window, from the point of 

injection through end of the separation. To assess the quality of a given separation relative to 

another, the average Rh of the measured sample distribution was calculated for each 

parameter setting using all data within the AF4 elution window. Using the uncertainty-

weighted average, points of lower accuracy with low signal to noise ratios are less 

influential in calculating Rh, and no statistical manipulation was required. Further, all data 

were used to maintain consistency between protocols of different elution lengths and 

resolution. Each protocol was run in triplicate to ensure the reproducibility of the separation.

3. Results and Discussion

3.1 AF4 Separation Of Polystyrene Mixtures

The separation metric was applied to polystyrene bead mixtures spanning a wide dynamic 

range (20 nm - 100 nm) in increments of 20 nm. While polystyrene beads are inherently less 

polydisperse than a complex natural sample, these mixtures mimic complex samples in that 

baseline resolution was not possible by adjusting the Vx and Vx gradient alone within the 

designated elution window. Polystyrene beads (particles) are often used as model systems 

for AF4 size calibration and system optimization prior to analysis with real, complex 

samples [2, 3, 21, 22] and polystyrene standards separated with AF4 have been shown to 

have very good sample recoveries [21]. The application of this metric to more complex 

samples, like environmental samples, would require additional characterization and recovery 

analysis to account for non-ideal behavior, such as the potential risk of particle-membrane 

and particle-particle interactions, to identify any sample changes that may occur with 

separation parameter modification. Recovery experiments are typically performed with the 

addition of a concentration detector, like refractive index or UV-Vis spectrophotometry.

Samples 1 and 2 were separated by AF4-QELS using protocols of increasing retention time, 

shown in Figure 2 and described below. For demonstration purposes, the separation 

parameters chosen were Vx and Vx gradient time, as they are primary AF4 separation 

parameters. While we have chosen two separation parameters out of a potentially larger set 

of instrument factors as a demonstration, the proposed methodology could be applied to any 
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combination of other parameters or potentially all could be used simultaneously, depending 

on the desired application. In the case of all available parameters being applied, a broader 

optimized methodology of screening and optimization designs along with appropriate 

analysis would be required.

The analysis procedure chosen for this work is as follows: beginning with the protocol of 

very low retention time (protocol: “A”), the average measured size for each sample 

separated using each protocol of increasing retention time (protocols: “B” through “K”) was 

compared with that of the previous protocol until increasing retention no longer produced a 

significant decrease in average measured size. At this point, a protocol of higher retention in 

an orthogonal direction of steepest descent to that of previous pair was selected (protocols: 

“Po1 and Po2”). Exploring Po1 and Po2 better populates the experimental space in identifying 

a local minimum in average measured size. All values for each protocol were plotted for 

both mixtures, as shown in Figure 3a for Sample 1 and Figure 3b for Sample 2. In the event 

that increasing particle retention by turning up the Vx and elution ramp did not yield a 

significant decrease in average Rh compared to the previous protocol, the value was 

compared to that of Pmax to ensure that an extreme increase in retention would not result in a 

significantly lower average Rh. If this comparison failed, then the retention was increased 

and the process repeated until the statistical minimum was identified. The statistical details 

for a stepwise approach for selecting a successful separation protocol, and the determination 

as to whether the chosen protocol is sufficient for the intended application, are shown via 

flowchart and a worked example in the Supporting Materials (Fig. S-1 and Table S-2, 

respectively).

3.2 Light Scattering Analysis

In both cases, protocol H was identified as being the optimal protocol of those tested, with 

the average measured Rh found to be (21.1 ± 0.5) nm and (26.3 ± 0.6) nm for the Samples 1 

and 2, respectively (Figure 3). All uncertainties are defined at the 95% confidence interval. 

The average measured Rh and associated uncertainty for Samples 1 and 2 separated with 

protocols A-K, Po1, Po2, and Pmax for n = 3 are given in the Supporting Materials (Table 

S-3) and shown relative to protocol selection in Figure 4.

The calculated average Rh of the polystyrene mixtures was (21.7 nm ± 1.0 nm) for Sample 

1, and (23.6 nm ± 1.5) nm for Sample 2, based on the known particle size distribution and 

individual mean particle sizes for each polystyrene bead in the mixture as determined by 

light scattering. The calculations are provided in the Supporting Materials (Table S-4). 

While separation expertise might suggest that the optimal parameters lies after the midpoint 

of increasing retention strength and could have been used as a more efficient initial starting 

point for either design or analysis, we chose to begin at low retention in order to better 

demonstrate the trend towards a minimum average measured size.

It is expected that the average measured size for Sample 1 is lower than that of the Sample 2, 

as the majority of QELS signal intensity in Sample 2 is of very low intensity compared to 

signal from large particles. The signal from the low amount of scatter attributed to the 

smaller particle sizes in Sample 2 might be too low to be distinguished from the larger 
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particles and, therefore, the measured average size will be larger than the actual average 

size.

3.3 Separations Of Polydisperse Mixtures

In the case of polydisperse samples with characteristics similar to Sample 2, it may not be 

possible to detect the smallest sizes within the constraints of the instrument; either due to 

detection limits from low scattering intensity of small particles, or further increases in 

retention time causes dispersive mechanisms to reduce the separation efficiency. In contrast, 

Sample 1 contains a relatively large amount of small particles compared to large particles 

(approximately 98% of polystyrene mass concentration contains particles between ∼20 nm 

and ∼40 nm in diameter, whereas the remaining 2% of polystyrene mass concentration 

contains particles between ∼60 nm and ∼100 nm in diameter), thus, there is more scattering 

signal from the smaller particles relative to larger particles. In a complex mixture, achieving 

baseline resolution between particle species is unlikely. By minimizing the measured size, 

however, the ability to find the separation protocol that yields the best possible measurement 

considering the polydisperse sample distribution and the instrument operational limits. 

These observations are demonstrated in the representative fractograms and hydrodynamic 

radius distribution overlays, given in Figure 5, for Samples 1 and 2 using separation 

protocols A, H, and Pmax.

While this paper identifies a local optimum protocol based on discrete data, the more 

rigorous approach would be to identify a global optimum based on a continuous surface 

design of measured particle size against separation parameters along a continuum of 

settings. The cost of global optimization would require significantly more data.

The point of optimal separation identified by statistically significant decreases in measured 

size may not in fact be the point of the very best separation. However, increasing retention 

time will not likely produce a statistically smaller average size than the protocol with shorter 

retention time, as demonstrated with Samples 1 and 2 beyond the local minimum of Protocol 

H, and will require an increase in analysis time with minimal improvement in separation. 

Furthermore, higher retention may also increase the average measured size as dispersive 

effects compromise the benefits of increased selectivity.

Optimization depends on the relative priority of retention time and separation selectivity. 

Depending on the sample properties and the intended application, a separation protocol can 

be selected that balances analysis time and separation resolution. The separation variables, 

Vx and ramp time, were chosen to linearly populate the domain of particle retention from the 

protocol of lowest retention (A) to one of highest retention (Pmax), as shown in Figure 2. 

Simple separation theory predicts that the average measured size will decrease to an 

asymptote; beyond a certain separation, additional retention increases do not yield a 

significant decrease in measured size. In reality, however, the average measured size will 

typically reach a minimum and then (with higher retention) likely increase due to dispersive 

effects.
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3.4 Method Application

There are several options for the sequential choice of protocols. For a stepwise approach 

without making assumptions based on sample distribution, a protocol should be initially 

chosen with minimum retention, while the subsequent protocols of increasing retention 

should be selected so that the average measured size decreases significantly before reaching 

a minimum. Again, in situations where separation theory and experience are not sufficient 

for qualitatively determining the separation quality of complex, polydisperse mixtures, more 

objective and rigorous approaches should be applied. In most cases, a gradient method can 

be applied to best identify a local minimum within the experimental space, by analyzing 

protocols orthogonal to those identified as optimal in the direction of steepest descent [23, 

24], e.g., Po1 and Po2 for protocol H in Figure 2. The larger design issue in regard to 

choosing the number of parameters to investigate balanced with practical constraints of how 

many sample runs are affordable is the subject of further study. The next step is to perform a 

formal response surface optimization analysis, a methodology to explore the relationships 

between several independent variables and one or more response variable [25]. A response 

surface design would provide a more statistically rigorous way of identifying globally 

optimal parameters that yield the minimum average measured size, especially for the cases 

where the optimal set of parameters might not lie directly on the linear path between a set of 

parameters with very low retention and Pmax.

4. Conclusions

This work introduces a new metric for optimizing separations of polydisperse samples 

through a demonstration using AF4-QELS with a model system of polystyrene bead 

mixtures in order to mimic complex samples. The comparison of average measured size 

between separation parameters provides an analytical means for objectively converging to 

the optimal combination of instrumental parameters and identifying a separation protocol 

that sufficiently separates a polydisperse mixture of nanoparticles, especially when 

separation theory and observations of the raw data become difficult to apply to complex 

samples. By identifying a separation protocol that is of sufficient selectivity, large and small 

particles are separated in such a way that they are detected distinctly, resulting in an overall 

lower average particle size measurement. Therefore, the more optimal the separation, the 

smaller the average measured size, providing a metric for optimizing separation of 

polydisperse samples of unknown size distributions. Additionally, this metric establishes a 

methodology of identifying a quality separation while minimizing unnecessary analysis 

time. Although demonstrated using AF4-QELS, the separation metric and step-wise 

approach are applicable to any chromatography technique coupled with dynamic light 

scattering detection.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We present a tool to assess relative accuracy among separation protocols.

• This metric can be applied to any techniques using light scattering detection.

• An improved separation protocol minimizes the average measured particlesize.

• A protocol with the smallest average measured particle size is the 

bestseparation.

• Metric is demonstrated by improving AF4 cross flow protocols forpolystyrene 

beads.
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Figure 1. 
Cartoon depicting separation scenarios for a complex mixture of particles: (Left) 

insufficiently separated sample where large particles dominate the measurement and obscure 

smaller particles from detection, and (Right) a size-based separation of sufficient selectivity 

where both large and small particles are detected separately.

Galyean et al. Page 12

Anal Chim Acta. Author manuscript; available in PMC 2016 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Vx and elution time of selected protocols using AF4-QELS along the trend of increasing 

retention strength from A-K. Po1 and Po2 represent protocols that are orthogonal to protocol 

H in separation time and initial Vx. Pmax represents the protocol of highest retention possible 

given instrumental or experimental limitations.
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Figure 3. 
The combined average measured Rh (◆) and associated uncertainty from (a) Sample 1 (b) 

Sample 2 with protocols A-K, Po1, Po2, and Pmax for n = 3 using AF4-QELS. The optimal 

protocol is “H” (■), where Rh is minimized. The calculated average Rh and associated 

uncertainty based on the actual size distribution for each sample is given as the dashed line. 

All uncertainties are defined at the 95% confidence interval. Rh = Hydrodynamic Radius 

(nm).
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Figure 4. 
The average measured Rh and associated uncertainty for (a) Sample 1 and (b) Sample 2 

separated with selected protocols, shown as initial cross flow vs. ramp time, for n = 3. Rh = 

Hydrodynamic Radius (nm).
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Figure 5. 
Representative fractograms from Sample 1 using separation protocol (a) A, (b) H, and (c) 

Pmax. Fractograms from Sample 2 are also shown (d). Sample 2, Protocol A resulted in 

detector saturation. The solid line represents the relative light scattering signal intensity and 

the markers indicate the measured hydrodynamic radius (nm) at each time slice.
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Table 1

AF4 Operating Conditions

Membrane Regenerated cellulose, 10 kDa MWCO

Carrier liquid 1.0 mM NH4NO3 in 18.2 MΩ•cm nanopure water

Spacer thickness 350 μm

Detector flow 1.00 mL min−1

Injection volume
50 μL (Sample 1)

60 μL (Sample 2)

Injection flow 0.20 mL min−1

Focusing Regime

1.00 min focus

3.00 min focus + inject

2.00 min focus

Focusing Flow 1.50 mL min−1
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