862 research outputs found

    A nonlinear analysis for sloshing forces and moments on a cylindrical tank

    Get PDF
    Sloshing forces and moments on cylindrical tank - integration of nonlinear force equation

    An approximate nonlinear analysis of the stability of sloshing modes under transla- tional and rotational excitation

    Get PDF
    Nonlinear analysis of sloshing mode stability under translational and rotational excitatio

    Multiple transitions of the spin configuration in quantum dots

    Get PDF
    Single electron tunneling is studied in a many electron quantum dot in high magnetic fields. For such a system multiple transitions of the spin configuration are theoretically predicted. With a combination of spin blockade and Kondo effect we are able to detect five regions with different spin configurations. Transitions are induced with changing electron numbers.Comment: 4 pages, 5 figure

    Interaction-Induced Spin Polarization in Quantum Dots

    Get PDF
    The electronic states of lateral many electron quantum dots in high magnetic fields are analyzed in terms of energy and spin. In a regime with two Landau levels in the dot, several Coulomb blockade peaks are measured. A zig-zag pattern is found as it is known from the Fock-Darwin spectrum. However, only data from Landau level 0 show the typical spin-induced bimodality, whereas features from Landau level 1 cannot be explained with the Fock-Darwin picture. Instead, by including the interaction effects within spin-density-functional theory a good agreement between experiment and theory is obtained. The absence of bimodality on Landau level 1 is found to be due to strong spin polarization.Comment: 4 pages, 5 figure

    Non-invasive detection of molecular bonds in quantum dots

    Get PDF
    We performed charge detection on a lateral triple quantum dot with star-like geometry. The setup allows us to interpret the results in terms of two double dots with one common dot. One double dot features weak tunnel coupling and can be understood with atom-like electronic states, the other one is strongly coupled forming molecule-like states. In nonlinear measurements we identified patterns that can be analyzed in terms of the symmetry of tunneling rates. Those patterns strongly depend on the strength of interdot tunnel coupling and are completely different for atomic- or molecule-like coupled quantum dots allowing the non-invasive detection of molecular bonds.Comment: 4 pages, 4 figure

    Spin Blockade in Capacitively Coupled Quantum Dots

    Get PDF
    We present transport measurements on a lateral double dot produced by combining local anodic oxidation and electron beam lithography. We investigate the tunability of our device and demonstrate, that we can switch between capacitive and tunnel coupling. In the regime of capacitive coupling we observe the phenomenon of spin blockade in a magnetic field and analyze the influence of capacitive interdot coupling on this effect.Comment: 4 pages, 3 figure

    Competing periodicities in fractionally filled one-dimensional bands

    Full text link
    We present a variable temperature Scanning Tunneling Microscopy and Spectroscopy (STM and STS) study of the Si(553)-Au atomic chain reconstruction. This quasi one-dimensional (1D) system undergoes at least two charge density wave (CDW) transitions at low temperature, which can be attributed to electronic instabilities in the fractionally-filled 1D bands of the high-symmetry phase. Upon cooling, Si(553)-Au first undergoes a single-band Peierls distortion, resulting in period doubling along the imaged chains. This Peierls state is ultimately overcome by a competing tripleperiod CDW, which in turn is accompanied by a x2 periodicity in between the chains. These locked-in periodicities indicate small charge transfer between the nearly half-filled and quarter-filled 1D bands. The presence and the mobility of atomic scale dislocations in the x3 CDW state indicates the possibility of manipulating phase solitons carrying a (spin,charge) of (1/2,+-e/3) or (0,+-2e/3).Comment: submitted, accepted for publication in Phys. Rev. Let

    Probing a Kondo correlated quantum dot with spin spectroscopy

    Get PDF
    We investigate Kondo effect and spin blockade observed on a many-electron quantum dot and study the magnetic field dependence. At lower fields a pronounced Kondo effect is found which is replaced by spin blockade at higher fields. In an intermediate regime both effects are visible. We make use of this combined effect to gain information about the internal spin configuration of our quantum dot. We find that the data cannot be explained assuming regular filling of electronic orbitals. Instead spin polarized filling seems to be probable.Comment: 4 pages, 5 figure

    Two path transport measurements on a triple quantum dot

    Get PDF
    We present an advanced lateral triple quantum dot made by local anodic oxidation. Three dots are coupled in a starlike geometry with one lead attached to each dot thus allowing for multiple path transport measurements with two dots per path. In addition charge detection is implemented using a quantum point contact. Both in charge measurements as well as in transport we observe clear signatures of states from each dot. Resonances of two dots can be established allowing for serial transport via the corresponding path. Quadruple points with all three dots in resonance are prepared for different electron numbers and analyzed concerning the interplay of the simultaneously measured transport along both paths.Comment: 4 pages, 4 figure
    • …
    corecore