3,558 research outputs found

    The effect of a planet on the dust distribution in a 3D protoplanetary disk

    Get PDF
    Aims: We investigate the behaviour of dust in protoplanetary disks under the action of gas drag in the presence of a planet. Our goal is twofold: to determine the spatial distribution of dust depending on grain size and planet mass, and therefore to provide a framework for interpretation of coming observations and future studies of planetesimal growth. Method: We numerically model the evolution of dust in a protoplanetary disk using a two-fluid (gas + dust) Smoothed Particle Hydrodynamics (SPH) code, which is non-self-gravitating and locally isothermal. The code follows the three dimensional distribution of dust in a protoplanetary disk as it interacts with the gas via aerodynamic drag. In this work, we present the evolution of a minimum mass solar nebula (MMSN) disk comprising 1% dust by mass in the presence of an embedded planet. We run a series of simulations which vary the grain size and planetary mass to see how they affect the resulting disk structure. Results: We find that gap formation is much more rapid and striking in the dust layer than in the gaseous disk and that a system with a given stellar, disk and planetary mass will have a completely different appearance depending on the grain size. For low mass planets in our MMSN disk, a gap can open in the dust disk while not in the gas disk. We also note that dust accumulates at the external edge of the planetary gap and speculate that the presence of a planet in the disk may enhance the formation of a second planet by facilitating the growth of planetesimals in this high density region.Comment: 13 pages, 12 figures. Accepted for publication in Astronomy & Astrophysic

    SPH simulations of accretion disks and narrow rings

    Get PDF
    We model a massless viscous disk using Smoothed Particle Hydrodynamics (SPH) and note that it evolves according to the Lynden-Bell \& Pringle theory (1974) until a non-axisymmetric instability develops at the inner edge of the disk. This instability may have the same origin as the instability of initially axisymmetric viscous disks discussed by Lyubarskij et al. (1994). To clarify the evolution we evolved single and double rings of particles. It is actually inconsistent with the SPH scheme to set up a single ring as an initial condition because SPH assumes a smoothed initial state. As would be expected from an SPH simulation, the ring rapidly breaks up into a band. We analyse the stability of the ring and show that the predictions are confirmed by the simulation

    Predicting Dust Distribution in Protoplanetary Discs

    Get PDF
    We present the results of three-dimensional numerical simulations that include the effects of hydrodynamical forces and gas drag upon an evolving dusty gas disk. We briefly describe a new parallel, two phase numerical code based upon the smoothed particle hydrodynamics (SPH) technique in which the gas and dust phases are represented by two distinct types of particles. We use the code to follow the dynamical evolution of a population of grains in a gaseous protoplanetary disk in order to understand the distribution of grains of different sizes within the disk. Our ``grains'' range from metre to submillimetre in size.Comment: 2 pages, LaTeX with 1 ps figure embedded, using newpasp.sty (supplied). To appear in the proceedings of the XIXth IAP colloquium "Extrasolar Planets: Today and Tomorrow" held in Paris, France, 2003, June 30 -- July 4, ASP Conf. Se

    SPH Simulations of Accretion Disks and Narrow Rings

    Full text link
    We model a massless viscous disk using Smoothed Particle Hydrodynamics (SPH) and note that it evolves according to the Lynden-Bell \& Pringle theory (1974) until a non-axisymmetric instability develops at the inner edge of the disk. This instability may have the same origin as the instability of initially axisymmetric viscous disks discussed by Lyubarskij et al. (1994). To clarify the evolution we evolved single and double rings of particles. It is actually inconsistent with the SPH scheme to set up a single ring as an initial condition because SPH assumes a smoothed initial state. As would be expected from an SPH simulation, the ring rapidly breaks up into a band. We analyse the stability of the ring and show that the predictions are confirmed by the simulation.Comment: 11 pages, uuencoded compressed postscript with 2 figs, accepted PASA. Also available at http://www.maths.monash.edu.au/~maddison/me/papers.htm

    Extant! Living Bembidion palosverdes Kavanaugh and Erwin (Coleoptera: Carabidae) Found on Santa Catalina Island, California Full Access

    Get PDF
    Kavanaugh and Erwin (1992) described Bembidion palosverdes from seven specimens from two localities on the Palos Verdes Peninsula, Los Angeles Co., CA (Pt. Vicente, ∼33.741°N, 118.411°W, and Pt. Fermin, ∼33.705°N, 118.294°W), collected in June 1964 by Derham Giuliani. The species\u27 authors spent two days searching for specimens at the two known localities, but found no additional specimens. They suggested that the species may have become extinct prior to its formal description, citing a major 1969 oil spill as a potential factor

    Optimal constrained interpolation in mesh-adaptive finite element modelling

    Get PDF

    Detecting retinal cell stress and apoptosis with DARC: Progression from lab to clinic

    Get PDF
    DARC (Detection of Apoptosing Retinal Cells) is a retinal imaging technology that has been developed within the last 2 decades from basic laboratory science to Phase 2 clinical trials. It uses ANX776 (fluorescently labelled Annexin A5) to identify stressed and apoptotic cells in the living eye. During its development, DARC has undergone biochemistry optimisation, scale-up and GMP manufacture and extensive preclinical evaluation. Initially tested in preclinical glaucoma and optic neuropathy models, it has also been investigated in Alzheimer, Parkinson's and Diabetic models, and used to assess efficacy of therapies. Progression to clinical trials has not been speedy. Intravenous ANX776 has to date been found to be safe and well-tolerated in 129 patients, including 16 from Phase 1 and 113 from Phase 2. Results on glaucoma and AMD patients have been recently published, and suggest DARC with an AI-aided algorithm can be used to predict disease activity. New analyses of DARC in GA prediction are reported here. Although further studies are needed to validate these findings, it appears there is potential of the technology to be used as a biomarker. Much larger clinical studies will be needed before it can be considered as a diagnostic, although the relatively non-invasive nature of the nasal as opposed to intravenous administration would widen its acceptability in the future as a screening tool. This review describes DARC development and its progression into Phase 2 clinical trials from lab-based research. It discusses hypotheses, potential challenges, and regulatory hurdles in translating technology

    An attempt to observe economy globalization: the cross correlation distance evolution of the top 19 GDP's

    Full text link
    Economy correlations between the 19 richest countries are investigated through their Gross Domestic Product increments. A distance is defined between increment correlation matrix elements and their evolution studied as a function of time and time window size. Unidirectional and Bidirectional Minimal Length Paths are generated and analyzed for different time windows. A sort of critical correlation time window is found indicating a transition for best observations. The mean length path decreases with time, indicating stronger correlations. A new method for estimating a realistic minimal time window to observe correlations and deduce macroeconomy conclusions from such features is thus suggested.Comment: to be published in the Dyses05 proceedings, in Int. J. Mod Phys C 15 pages, 5 figures, 1 tabl

    Efficient FPT algorithms for (strict) compatibility of unrooted phylogenetic trees

    Full text link
    In phylogenetics, a central problem is to infer the evolutionary relationships between a set of species XX; these relationships are often depicted via a phylogenetic tree -- a tree having its leaves univocally labeled by elements of XX and without degree-2 nodes -- called the "species tree". One common approach for reconstructing a species tree consists in first constructing several phylogenetic trees from primary data (e.g. DNA sequences originating from some species in XX), and then constructing a single phylogenetic tree maximizing the "concordance" with the input trees. The so-obtained tree is our estimation of the species tree and, when the input trees are defined on overlapping -- but not identical -- sets of labels, is called "supertree". In this paper, we focus on two problems that are central when combining phylogenetic trees into a supertree: the compatibility and the strict compatibility problems for unrooted phylogenetic trees. These problems are strongly related, respectively, to the notions of "containing as a minor" and "containing as a topological minor" in the graph community. Both problems are known to be fixed-parameter tractable in the number of input trees kk, by using their expressibility in Monadic Second Order Logic and a reduction to graphs of bounded treewidth. Motivated by the fact that the dependency on kk of these algorithms is prohibitively large, we give the first explicit dynamic programming algorithms for solving these problems, both running in time 2O(k2)n2^{O(k^2)} \cdot n, where nn is the total size of the input.Comment: 18 pages, 1 figur
    corecore