3,550 research outputs found

    A two-dimensional model of the quasi biennial oscillation of ozone

    Get PDF
    The largest amplitudes of the observed Quasi Biennial Oscillation (QBO) in column ozone are found in high latitudes and this must be taken into account in any explanation of the increased depletion of ozone in the southern polar spring during the 1980's. A QBO in zonal wind, temperature and column ozone has been successfully modelled in a two-dimensional dynamical/chemical model by the introduction of a parameterization scheme to model the transfer of momentum to the zonal flow associated with the damping of vertically propagating Kelvin and Rossby-Gravity waves. The largest anomalies in column ozone of approximately 20 DU are present at high latitudes. The equatorial ozone QBO is out of phase with the mid- and high-latitude ozone QBO, in good agreement with observations

    Meteorology and Cimatology: On-Line Weather Studies

    Get PDF
    Through the Virginia Earth Science Collaborative (VESC), a partnership of nine institutes of higher education, non-profit organizations, and eighty-three school divisions, a 3-credit, graduate-level meteorology course was offered six times between Spring 2006 and Fall 2007. The course, entitled Meteorology, was offered at three locations (Richmond, Abingdon, and Harrisonburg), and a local instructor facilitated each section. Funding for the course development, instructor stipends, and participant expenses (including travel, meals, and tuition) was provided through a competitive Mathematics and Science Partnership (MSP) grant funded through the federal No Child Left Behind legislation of 2001. The framework of the course was the American Meteorological Society\u27s Online Weather Studies program, which provides meteorological content and laboratory investigations, and relies heavily on the use of Internet-accessed, real-time weather data to teach meteorological topics in a distance learning format. The 115 teacher participants were required to complete text readings and written assignments, conduct laboratory investigations, design projects using real—time meteorological data, complete exams, and attend three face-to-face meetings. For the purpose of the VESC grant evaluation, pre-test and post-test data were collected on 110 of the participants which indicated an average 14.7% increase in participants‘ content knowledge and use of real-time meteorological products (weather maps, satellite images, station models, etc.) in their instructional delivery

    The large-scale modulation of cosmic rays in mid-1982: Its dependence on heliospheric longitude and radius

    Get PDF
    Near solar maximum, a series of large radial solar wind shocks in June and July 1982 provided a unique opportunity to study the solar modulation of galactic cosmic rays with an array of spacecraft widely separated both in heliocentric radius and longitude. By eliminating hysteresis effects it is possible to begin to separate radial and azimuthal effects in the outer heliosphere. On the large scale, changes in modulation (both the increasing and recovery phases) propagate outward at close to the solar wind velocity, except for the near-term effects of solar wind shocks, which may propagate at a significantly higher velocity. In the outer heliosphere, azimuthal effects are small in comparison with radial effects for large-scale modulation at solar maximum

    Flight determined lift and drag characteristics of an F-8 airplane modified with a supercritical wing with comparison to wind-tunnel results

    Get PDF
    Flight measurements obtained with a TF-8A airplane modified with a supercritical wing are presented for altitudes from 7.6 kilometers (25,000 feet) to 13.7 kilometers (45,000 feet), Mach numbers from 0.6 to 1.2, and Reynolds numbers from 0.8 x 10 to the 7th power to 2.3 x 10 to the 7th power. Flight results for the airplane with and without area-rule fuselage fairings are compared. The techniques used to determine the lift and drag characteristics of the airplane are discussed. Flight data are compared with wind-tunnel model results, where applicable

    Performance of a ballute decelerator towed behind a jet airplane

    Get PDF
    An F-104B airplane was modified to investigate the drag and stability characteristics of a ballute decelerator in the wake of an asymmetrical airplane. Decelerator deployments were initiated at a Mach number of 1.3 and an altitude of 15,240 meters (50,000 feet) and terminated when the airplane had decelerated to a Mach number of 0.5. The flight tests indicated that the decelerator had a short inflation time with relatively small opening forces. The drag levels attained with the subject decelerator were less than those obtained with other high-speed decelerators behind a symmetrical tow vehicle. The ballute demonstrated good stability characteristics behind the testbed airplane

    Book Review: Harvard Business Reports, Vol. I.

    Get PDF

    Chemical and climatic drivers of radiative forcing due to changes in stratospheric and tropospheric ozone over the 21st century

    Get PDF
    The ozone radiative forcings (RFs) resulting from projected changes in climate, ozone-depleting substances (ODSs), non-methane ozone precursor emissions and methane between the years 2000 and 2100 are calculated using simulations from the UM-UKCA chemistry–climate model (UK Met Office's Unified Model containing the United Kingdom Chemistry and Aerosols sub-model). Projected measures to improve air-quality through reductions in non-methane tropospheric ozone precursor emissions present a co-benefit for climate, with a net global mean ozone RF of −0.09 W m‾². This is opposed by a positive ozone RF of 0.05 W m‾² due to future decreases in ODSs, which is driven by an increase in tropospheric ozone through stratosphere-to-troposphere transport of air containing higher ozone amounts. An increase in methane abundance by more than a factor of 2 (as projected by the RCP8.5 scenario) is found to drive an ozone RF of 0.18 W m‾², which would greatly outweigh the climate benefits of non-methane tropospheric ozone precursor reductions. A small fraction (∼ 15 %) of the ozone RF due to the projected increase in methane results from increases in stratospheric ozone. The sign of the ozone RF due to future changes in climate (including the radiative effects of greenhouse gases, sea surface temperatures and sea ice changes) is shown to be dependent on the greenhouse gas emissions pathway, with a positive RF (0.05 W m‾²) for RCP4.5 and a negative RF (−0.07 W m‾²) for the RCP8.5 scenario. This dependence arises mainly from differences in the contribution to RF from stratospheric ozone changes. Considering the increases in tropopause height under climate change causes only small differences (≤ |0.02| W m‾²) for the stratospheric, tropospheric and whole-atmosphere RFs

    The 1973-1984 Solar Modulation of Cosmic Ray Nuclei

    Get PDF
    As a continuation of the program of solar modulation studies, new measurements were carried out with the cosmic ray telescope on the Earth satellite IMP-8, of the intensity time variations and the energy spectra of galactic cosmic ray protons, helium, carbon and oxygen from 1980 through 1984 including the recent solar maximum. In order to test the applicability of a steady state model of solar modulation during a period which includes times of rapidly changing modulation, these fluxes were equated with the predictions of a conventional model of solar modulation which assumes equilibrium between modulation mechanisms. It is found that for a reasonable range of variations of the diffusion coefficient the model predictions can be made to agree with the measurements at essentially all times during the studied period. The model can account also for the observed hysteresis effects between cosmic rays of different rigidities
    • …
    corecore