11 research outputs found

    Correcting pervasive errors in RNA crystallography through enumerative structure prediction

    Full text link
    Three-dimensional RNA models fitted into crystallographic density maps exhibit pervasive conformational ambiguities, geometric errors and steric clashes. To address these problems, we present enumerative real-space refinement assisted by electron density under Rosetta (ERRASER), coupled to Python-based hierarchical environment for integrated 'xtallography' (PHENIX) diffraction-based refinement. On 24 data sets, ERRASER automatically corrects the majority of MolProbity-assessed errors, improves the average Rfree factor, resolves functionally important discrepancies in noncanonical structure and refines low-resolution models to better match higher-resolution models

    Untangling the relationship between diet and visceral fat mass through blood metabolomics and gut microbiome profiling

    Get PDF
    BACKGROUND/OBJECTIVES: Higher visceral fat mass (VFM) is associated with an increased risk for developing cardio-metabolic diseases. The mechanisms by which an unhealthy diet pattern may influence VF development has yet to be examined through cutting-edge multi-omic methods. Therefore, our objective was to examine the dietary influences on VFM and identify gut microbiome and metabolite profiles that link food intakes to VFM. SUBJECTS/METHODS: In 2218 twins with VFM, food intake and metabolomics data available we identified food intakes most strongly associated with VFM in 50% of the sample, then constructed and tested the ‘VFM diet score’ in the remainder of the sample. Using linear regression (adjusted for covariates, including BMI and total fat mass) we investigated associations between the VFM diet score, the blood metabolomics profile and the faecal microbiome (n=889), and confirmed these associations with VFM. We replicated top findings in monozygotic (MZ) twins discordant (greater than or equal to1 s.d. apart) for VFM, matched for age, sex and the baseline genetic sequence. RESULTS: Four metabolites were associated with the VFM diet score and VFM: hippurate, alpha-hydroxyisovalerate, bilirubin (Z,Z) and butyrylcarnitine. We replicated associations between VFM and the diet score (Beta[s.e.]: 0.281[0.091]; P=0.002), butyrylcarnitine (0.199[0.087]; P=0.023) and hippurate (−0.297[0.095]; P=0.002) in VFM-discordant MZ twins. We identified a single species, Eubacterium dolichum to be associated with the VFM diet score (0.042[0.011], P=8.47 × 10−5), VFM (0.057[0.019], P=2.73 × 10−3) and hippurate (−0.075[0.032], P=0.021). Moreover, higher blood hippurate was associated with elevated adipose tissue expression neuroglobin, with roles in cellular oxygen homeostasis (0.016[0.004], P=9.82 × 10−6). CONCLUSION: We linked a dietary VFM score and VFM to Eubacterium dolichum and four metabolites in the blood. In particular, the relationship between hippurate, a metabolite derived from microbial metabolism of dietary polyphenols, and reduced VFM, the microbiome and increased adipose tissue expression of neuroglobin provides potential mechanistic insight into the influence of diet on VFM

    Genetic interactions between a phospholipase A2 and the Rim101 pathway components in S. cerevisiae reveal a role for this pathway in response to changes in membrane composition and shape

    Get PDF
    Modulating composition and shape of biological membranes is an emerging mode of regulation of cellular processes. We investigated the global effects that such perturbations have on a model eukaryotic cell. Phospholipases A2 (PLA2s), enzymes that cleave one fatty acid molecule from membrane phospholipids, exert their biological activities through affecting both membrane composition and shape. We have conducted a genome-wide analysis of cellular effects of a PLA2 in the yeast Saccharomyces cerevisiae as a model system. We demonstrate functional genetic and biochemical interactions between PLA2 activity and the Rim101 signaling pathway in S. cerevisiae. Our results suggest that the composition and/or the shape of the endosomal membrane affect the Rim101 pathway. We describe a genetically and functionally related network, consisting of components of the Rim101 pathway and the prefoldin, retromer and SWR1 complexes, and predict its functional relation to PLA2 activity in a model eukaryotic cell. This study provides a list of the players involved in the global response to changes in membrane composition and shape in a model eukaryotic cell, and further studies are needed to understand the precise molecular mechanisms connecting them

    Femtosecond X-ray protein nanocrystallography

    No full text
    X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded1, 2, 3. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction ‘snapshots’ are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source4. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes5. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (~200 nm to 2 μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes6. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage
    corecore