38 research outputs found

    Evidence of Deep Water Penetration in Silica during Stress Corrosion Fracture

    Get PDF
    We measure the thickness of the heavy water layer trapped under the stress corrosion fracture surface of silica using neutron reflectivity experiments. We show that the penetration depth is 65–85 Å, suggesting the presence of a damaged zone of ~100 Å extending ahead of the crack tip during its propagation. This estimate of the size of the damaged zone is compatible with other recent results

    Cleaved surface of i-AlPdMn quasicrystals: Influence of the local temperature elevation at the crack tip on the fracture surface roughness

    Get PDF
    Roughness of i-AlPdMn cleaved surfaces are presently analysed. From the atomic scale to 2-3 nm, they are shown to exhibit scaling properties hiding the cluster (0.45 nm) aperiodic structure. These properties are quantitatively similar to those observed on various disordered materials, albeit on other ranges of length scales. These properties are interpreted as the signature of damage mechanisms occurring within a 2-3 nm wide zone at the crack tip. The size of this process zone finds its origin in the local temperature elevation at the crack tip. For the very first time, this effect is reported to be responsible for a transition from a perfectly brittle behavior to a nanoductile one.Comment: 8 page

    Nonlinear Waves in Disordered Diatomic Granular Chains

    Get PDF
    We investigate the propagation and scattering of highly nonlinear waves in disordered granular chains composed of diatomic (two-mass) units of spheres that interact via Hertzian contact. Using ideas from statistical mechanics, we consider each diatomic unit to be a "spin", so that a granular chain can be viewed as a spin chain composed of units that are each oriented in one of two possible ways. Experiments and numerical simulations both reveal the existence of two different mechanisms of wave propagation: In low-disorder chains, we observe the propagation of a solitary pulse with exponentially decaying amplitude. Beyond a critical level of disorder, the wave amplitude instead decays as a power law, and the wave transmission becomes insensitive to the level of disorder. We characterize the spatio-temporal structure of the wave in both propagation regimes and propose a simple theoretical interpretation for such a transition. Our investigation suggests that an elastic spin chain can be used as a model system to investigate the role of heterogeneities in the propagation of highly nonlinear waves.Comment: 10 pages, 8 figures (some with multiple parts), to appear in Physical Review E; summary of changes: new title, one new figure, additional discussion of several points (including both background and results

    Failure mechanisms and surface roughness statistics of fractured Fontainebleau sandstone

    Full text link
    In an effort to investigate the link between failure mechanisms and the geometry of fractures of compacted grains materials, a detailed statistical analysis of the surfaces of fractured Fontainebleau sandstones has been achieved. The roughness of samples of different widths W is shown to be self affine with an exponent zeta=0.46 +- 0.05 over a range of length scales ranging from the grain size d up to an upper cut-off length \xi = 0.15 W. This low zeta value is in agreement with measurements on other sandstones and on sintered materials. The probability distributions P(delta z,delta h) of the variations of height over different distances delta z > d can be collapsed onto a single Gaussian distribution with a suitable normalisation and do not display multifractal features. The roughness amplitude, as characterized by the height-height correlation over fixed distances delta z, does not depend on the sample width, implying that no anomalous scaling of the type reported for other materials is present. It is suggested, in agreement with recent theoretical work, to explain these results by the occurence of brittle fracture (instead of damage failure in materials displaying a higher value of zeta = 0.8).Comment: 7 page

    Toughening and asymmetry in peeling of heterogeneous adhesives

    Get PDF
    The effective adhesive properties of heterogeneous thin films are characterized through a combined experimental and theoretical investigation. By bridging scales, we show how variations of elastic or adhesive properties at the microscale can significantly affect the effective peeling behavior of the adhesive at the macroscale. Our study reveals three elementary mechanisms in heterogeneous systems involving front propagation: (i) patterning the elastic bending stiffness of the film produces fluctuations of the driving force resulting in dramatically enhanced resistance to peeling; (ii) optimized arrangements of pinning sites with large adhesion energy are shown to control the effective system resistance, allowing the design of highly anisotropic and asymmetric adhesives; (iii) heterogeneities of both types result in front motion instabilities producing sudden energy releases that increase the overall adhesion energy. These findings open potentially new avenues for the design of thin films with improved adhesion properties, and motivate new investigation of other phenomena involving front propagation.Comment: Physical Review Letters (2012)

    Morphology of two dimensional fracture surface

    Full text link
    We consider the morphology of two dimensional cracks observed in experimental results obtained from paper samples and compare these results with the numerical simulations of the random fuse model (RFM). We demonstrate that the data obey multiscaling at small scales but cross over to self-affine scaling at larger scales. Next, we show that the roughness exponent of the random fuse model is recovered by a simpler model that produces a connected crack, while a directed crack yields a different result, close to a random walk. We discuss the multiscaling behavior of all these models.Comment: slightly revise

    Damage accumulation and hysteretic behavior of MAX phase materials

    No full text
    The compressive response of fully dense and 10 vol% porous Ti_(2)AlC MAX phase materials subjected to quasi-static uniaxial and cyclic loading including their repeatable hysteretic behavior is presented. Damage accumulation in the form of kink bands and microcracking is characterized using ultrasonics and scanning electron microscopy under different levels of compressive loading. The observations and measurements are correlated quantitatively using a model based on friction between the crack faces, which is the main dissipation process. The model is shown to capture the hysteretic behavior of Ti_(2)AlC MAX phase and quantitatively reproduce the experimentally measured stress–strain curves
    corecore