9 research outputs found
Carburisation of ferritic Fe–Cr alloys by low carbon activity gases
Model Fe–Cr alloys were exposed to Ar–CO2–H2O gas mixtures at 650 and 800 °C. At equilibrium, these atmospheres are oxidising to the alloys, but decarburising (aC ≈ 10−15 to 10−13). In addition to developing external oxide scales, however, the alloys also carburised. Carbon supersaturation at the scale/alloy interface relative to the gas reflects local equilibrium: a low oxygen potential corresponds to a high pCO/pCO2 ratio, and hence to a high carbon activity. Interfacial carbon activities calculated on the basis of scale–alloy equilibrium are shown to be in good agreement with measured carburisation rates and precipitate volume fractions, providing support for the validity of the thermodynamic model
Metallic materials in solid oxide fuel cells
Fe-Cr alloys with variations in chromium content and additions of different elements were studied for potential application in intermediate temperature Solid Oxide Fuel Cell (SOFC). Recently, a new type of FeCrMn(Ti/La) based ferritic steels has been developed to be used as construction material for SOFC interconnects. In the present paper, the long term oxidation resistance of this class of steels in both air and simulated anode gas will be discussed and compared with the behaviour of a number of commercial available ferritic steels. Besides, in-situ studies were carried out to characterize the high temperature conductivity of the oxide scales formed under these conditions. Main emphasis will be put on the growth and adherence of the oxide scales formed during exposure, their contact resistance at service temperature as well as their interaction with various perovskite type contact materials. Additionally, parameters and protection methods in respect to the volatilization of chromia based oxide scales will be illustrated