197 research outputs found
Interacting Crumpled Manifolds: Exact Results to all Orders of Perturbation Theory
In this letter, we report progress on the field theory of polymerized
tethered membranes. For the toy-model of a manifold repelled by a single point,
we are able to sum the perturbation expansion in the strength g of the
interaction exactly in the limit of internal dimension D -> 2. This exact
solution is the starting point for an expansion in 2-D, which aims at
connecting to the well studied case of polymers (D=1). We here give results to
order (2-D)^4, where again all orders in g are resummed. This is a first step
towards a more complete solution of the self-avoiding manifold problem, which
might also prove valuable for polymers.Comment: 8 page
Interacting crumpled manifolds
In this article we study the effect of a delta-interaction on a polymerized
membrane of arbitrary internal dimension D. Depending on the dimensionality of
membrane and embedding space, different physical scenarios are observed. We
emphasize on the difference of polymers from membranes. For the latter,
non-trivial contributions appear at the 2-loop level. We also exploit a
``massive scheme'' inspired by calculations in fixed dimensions for scalar
field theories. Despite the fact that these calculations are only amenable
numerically, we found that in the limit of D to 2 each diagram can be evaluated
analytically. This property extends in fact to any order in perturbation
theory, allowing for a summation of all orders. This is a novel and quite
surprising result. Finally, an attempt to go beyond D=2 is presented.
Applications to the case of self-avoiding membranes are mentioned
The one-loop elastic coefficients for the Helfrich membrane in higher dimensions
Using a covariant geometric approach we obtain the effective bending
couplings for a 2-dimensional rigid membrane embedded into a
-dimensional Euclidean space. The Hamiltonian for the membrane has three
terms: The first one is quadratic in its mean extrinsic curvature. The second
one is proportional to its Gaussian curvature, and the last one is proportional
to its area. The results we obtain are in agreement with those finding that
thermal fluctuations soften the 2-dimensional membrane embedded into a
3-dimensional Euclidean space.Comment: 9 page
Direct observation of the effective bending moduli of a fluid membrane: Free-energy cost due to the reference-plane deformations
Effective bending moduli of a fluid membrane are investigated by means of the
transfer-matrix method developed in our preceding paper. This method allows us
to survey various statistical measures for the partition sum. The role of the
statistical measures is arousing much attention, since Pinnow and Helfrich
claimed that under a suitable statistical measure, that is, the local mean
curvature, the fluid membranes are stiffened, rather than softened, by thermal
undulations. In this paper, we propose an efficient method to observe the
effective bending moduli directly: We subjected a fluid membrane to a curved
reference plane, and from the free-energy cost due to the reference-plane
deformations, we read off the effective bending moduli. Accepting the
mean-curvature measure, we found that the effective bending rigidity gains even
in the case of very flexible membrane (small bare rigidity); it has been rather
controversial that for such non-perturbative regime, the analytical prediction
does apply. We also incorporate the Gaussian-curvature modulus, and calculated
its effective rigidity. Thereby, we found that the effective Gaussian-curvature
modulus stays almost scale-invariant. All these features are contrasted with
the results under the normal-displacement measure
Field Theory of the RNA Freezing Transition
Folding of RNA is subject to a competition between entropy, relevant at high
temperatures, and the random, or random looking, sequence, determining the low-
temperature phase. It is known from numerical simulations that for random as
well as biological sequences, high- and low-temperature phases are different,
e.g. the exponent rho describing the pairing probability between two bases is
rho = 3/2 in the high-temperature phase, and approximatively 4/3 in the
low-temperature (glass) phase. Here, we present, for random sequences, a field
theory of the phase transition separating high- and low-temperature phases. We
establish the existence of the latter by showing that the underlying theory is
renormalizable to all orders in perturbation theory. We test this result via an
explicit 2-loop calculation, which yields rho approximatively 1.36 at the
transition, as well as diverse other critical exponents, including the response
to an applied external force (denaturation transition).Comment: 96 pages, 188 figures. v2: minor correction
Genetic dissimilarity in varieties of Artemisia annua L. based on agronomic, physiological and phytochemical characters
O presente estudo objetivou estimar a variabilidade genética existente entre caracteres agronômicos, fisiológicos e fitoquímicos em variedades de A. annua. O delineamento experimental foi inteiramente casualizado e os tratamentos foram as variedades Artemis, 2/39x5x3M, e 2/39x1V de A. annua, submetidas a avaliações agronômicas, fisiológicas e fitoquímicas. Para a realização das estimativas de distância genética foram geradas matrizes de dissimilaridade utilizando a distância Euclidiana e os métodos de agrupamento de Tocher e UPGMA. Além disso, avaliou-se a importância relativa dos caracteres para divergência genética pelo método de Singh. As análises foram realizadas pelo software Genes e os dendrogramas obtidos pelo NTSYS. A presença de variabilidade genética dentro das variedades permitiu a identificação de acessos dissimilares e com média elevada para as características estudadas. O número de ramificações, concentração intracelular de CO2, e o rendimento de óleo essencial foram os caracteres que mais contribuíram para a dissimilaridade genética de A. annua. Os acessos B24, C5 e C32 foram os mais promissores dentro das variedades e devem ser conservados para futuras hibridações, sendo que as hibridações mais promissoras na obtenção de populações segregantes desejadas são B24 x C5, B24 x C32 e C5 x C321621356363COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESsem informaçãoThis study aimed to estimate the genetic variability among agronomic, physiological, and phytochemical characters in varieties of A. annua. The experimental design was completely randomized and the treatments were the varieties Artemis, 2/39x5x3M and 2/39x1V of A. annua, subject to agronomic, physiological and phytochemical evaluations. To estimate the genetic distances, dissimilarity matrices were generated using the Euclidean distance and the Tocher and UPGMA grouping methods. Moreover, we evaluated the relative importance of the characters for genetic divergence through the method of Singh. The analyses were performed in the Genes software and the dendrograms were obtained from the NTSYS program. The presence of genetic variability within the varieties allowed the identification of dissimilar accessions with high average for all traits. The number of branches, intracellular concentration of CO2 and oil yield were the traits that contributed most to the genetic dissimilarity of A. annua. The accessions B24, C5 and C32 were the most promising within the populations and must be conserved for future crossings, and the most promising crosses to obtain the desired segregant populations were B24 x C5, B24 x C32 and C5 x C3
Time for gender mainstreaming in editorial policies
The HIV epidemic has been continuously growing among women, and in some parts of the world, HIV-infected women outnumber men. Women's greater vulnerability to HIV, both biologically and socially, influences their health risk and health outcome. This disparity between sexes has been established for other diseases, for example, autoimmune diseases, malignancies and cardiovascular diseases. Differences in drug effects and treatment outcomes have also been demonstrated
Thermal and Optical Characterization of Undoped and Neodymium-Doped Y3ScAl4O12 Ceramics
Y3–3xNd3xSc1Al4O12 (x = 0, 0.01, and 0.02) ceramics were fabricated by sintering at high temperature under vacuum. Unit cell parameter refinement and chemical analysis have been performed. The morphological characterization shows micrograins with no visible defects. The thermal analysis of these ceramics is presented, by measuring the specific heat in the temperature range from 300 to 500 K. Their values at room temperature are in the range 0.81–0.90 J g1–K–1. The thermal conductivity has been determined by two methods: by the experimental measurement of the thermal diffusivity by the photopyroelectric method, and by spectroscopy, evaluating the thermal load. The thermal conductivities are in the range 9.7–6.5 W K–1 m–1 in the temperature interval from 300 to 500 K. The thermooptic coefficients were measured at 632 nm by the dark mode method using a prism coupler, and the obtained values are in the range 12.8–13.3 × 10–6 K–1. The nonlinear refractive index values at 795 nm have been evaluated to calibrate the nonlinear optical response of these materials.This work is supported by the Spanish Government under projects MAT2011-29255-C02-01-02, MAT2013-47395-C4-4-R, and the Catalan Government under project 2014SGR1358. It was also funded by the European Commission under the Seventh Framework Programme, project Cleanspace, FP7-SPACE-2010-1-GA No. 263044
- …
