1,322 research outputs found

    Nodal-antinodal dichotomy from pairing disorder in d-wave superconductors

    Full text link
    We study the basic features of the local density of states (LDOS) observed in STM experiments on high-Tc_c d-wave superconductors in the context of a minimal model of a d-wave superconductor which has {\it weakly} modulated off-diagonal disorder. We show that the low and high energy features of the LDOS are consistent with the observed experimental patterns and in particular, the anisotropic local domain features at high energies. At low energies, we obtain not only the scattering peaks predicted by the octet model, but also weak features that should be experimentally accessible. Finally, we show that the emerging features of the LDOS lose their correspondence with the features of the imposed disorder, as its complexity increases spatially

    Energy efficiency parametric design tool in the framework of holistic ship design optimization

    Get PDF
    Recent International Maritime Organization (IMO) decisions with respect to measures to reduce the emissions from maritime greenhouse gases (GHGs) suggest that the collaboration of all major stakeholders of shipbuilding and ship operations is required to address this complex techno-economical and highly political problem efficiently. This calls eventually for the development of proper design, operational knowledge, and assessment tools for the energy-efficient design and operation of ships, as suggested by the Second IMO GHG Study (2009). This type of coordination of the efforts of many maritime stakeholders, with often conflicting professional interests but ultimately commonly aiming at optimal ship design and operation solutions, has been addressed within a methodology developed in the EU-funded Logistics-Based (LOGBASED) Design Project (2004–2007). Based on the knowledge base developed within this project, a new parametric design software tool (PDT) has been developed by the National Technical University of Athens, Ship Design Laboratory (NTUA-SDL), for implementing an energy efficiency design and management procedure. The PDT is an integral part of an earlier developed holistic ship design optimization approach by NTUA-SDL that addresses the multi-objective ship design optimization problem. It provides Pareto-optimum solutions and a complete mapping of the design space in a comprehensive way for the final assessment and decision by all the involved stakeholders. The application of the tool to the design of a large oil tanker and alternatively to container ships is elaborated in the presented paper

    Electronic States of Graphene Grain Boundaries

    Get PDF
    We introduce a model for amorphous grain boundaries in graphene, and find that stable structures can exist along the boundary that are responsible for local density of states enhancements both at zero and finite (~0.5 eV) energies. Such zero energy peaks in particular were identified in STS measurements [J. \v{C}ervenka, M. I. Katsnelson, and C. F. J. Flipse, Nature Physics 5, 840 (2009)], but are not present in the simplest pentagon-heptagon dislocation array model [O. V. Yazyev and S. G. Louie, Physical Review B 81, 195420 (2010)]. We consider the low energy continuum theory of arrays of dislocations in graphene and show that it predicts localized zero energy states. Since the continuum theory is based on an idealized lattice scale physics it is a priori not literally applicable. However, we identify stable dislocation cores, different from the pentagon-heptagon pairs, that do carry zero energy states. These might be responsible for the enhanced magnetism seen experimentally at graphite grain boundaries.Comment: 10 pages, 4 figures, submitted to Physical Review

    Incidental findings on MRI scans of patients presenting with audiovestibular symptoms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The evaluation of patients presenting with audiovestibular symptoms usually includes MRI of the internal auditory meatus, the cerebellopontine angle and the brain. A significant percentage of these scans will present unexpected, incidental findings, which could have important clinical significance.</p> <p>Objective</p> <p>To determine the frequency and clinical significance of incidental findings on MRI scans of patients with audiovestibular symptoms.</p> <p>Materials and methods</p> <p>A retrospective analysis of 200 serial MRI scans.</p> <p>Results</p> <p>Gender distribution: equal. Age range: 17-82 years. One-hundred and four scans (52%) were normal and 1 scan (0.5%) demonstrated a unilateral vestibular schwannoma. Ninety-five scans (47.5%) demonstrated incidental findings. Sixty-six of these (33%) were considered of ishaemic origin and did not require further action. Five (2.5%) scans demonstrated significant findings which warranted appropriate referral; Two Gliomas (1%), 2 cases of extensive White Matter Lesions (1%), 1 lipoma (0.5%). The remaining scans demonstrated various other findings.</p> <p>Conclusion</p> <p>Investigation of patients with audiovestibular symptoms with MRI scans revealed incidental findings in a significant percentage (47.5%). The majority of these findings were benign warranting no further action and only 2.5% required further referral. It is the responsibility of the referring Otolaryngologist to be aware of these findings, to be able to assess their significance, to inform the patient and if needed to refer for further evaluation.</p

    Localization of Quaternary slip rates in an active rift in 10(5) years: an example from central Greece constrained by U-234-Th-230 coral dates from uplifted paleoshorelines

    Get PDF
    Mapping, dating, and modeling of paleoshorelines uplifted in the footwall of the 1981 Gulf of Corinth earthquake fault, Greece (Ms 6.9–6.7), are used to assess its slip rate history relative to other normal faults in the area and study strain localization. The 234U-230Th coral ages from Cladocora caespitosa date uplifted shoreface sediments, and paleoshorelines from glacioeustatic sea level highstands at 76, (possibly) 100, 125, 175, 200, 216, 240, and 340 ka. Uplifted Quaternary and Holocene paleoshorelines decrease in elevation toward the western tip of the fault, exhibiting larger tilt angles with age, showing that uplift is due to progressive fault slip. Since 125 ka, uplift rates varied from 0.25 to 0.52 mm/yr over a distance of 5 km away from the fault tip. Tilting was also occurring prior to 125 ka, but uplift rates were lower because the 125 ka paleoshoreline is at 77% of the elevation of the 240 ka paleoshoreline despite being nearly half its age. Comparison of paleoshoreline elevations and sedimentology with the Quaternary sea level curve shows that slip rates increased by a factor of 3.2 ± 0.2 at 175 ± 75 ka, synchronous with cessation of activity on a neighboring normal fault at 382–112 ka. We suggest that the rapid localization of up to 10–15 mm/yr of extension into the narrow gulf (∼30 km wide) resulted from synchronous fault activity on neighboring faults followed by localization rather than sequential faulting, with consequences for the mechanism controlling localization of extension
    • …
    corecore