46 research outputs found

    The influence of visual flow and perceptual load on locomotion speed

    Get PDF
    Visual flow is used to perceive and regulate movement speed during locomotion. We assessed the extent to which variation in flow from the ground plane, arising from static visual textures, influences locomotion speed under conditions of concurrent perceptual load. In two experiments, participants walked over a 12-m projected walkway that consisted of stripes that were oriented orthogonal to the walking direction. In the critical conditions, the frequency of the stripes increased or decreased. We observed small, but consistent effects on walking speed, so that participants were walking slower when the frequency increased compared to when the frequency decreased. This basic effect suggests that participants interpreted the change in visual flow in these conditions as at least partly due to a change in their own movement speed, and counteracted such a change by speeding up or slowing down. Critically, these effects were magnified under conditions of low perceptual load and a locus of attention near the ground plane. Our findings suggest that the contribution of vision in the control of ongoing locomotion is relatively fluid and dependent on ongoing perceptual (and perhaps more generally cognitive) task demands

    Conhecendo a UFRGS

    No full text
    O Centro de Pesquisa em Odontologia Social - CPOS - é um órgão auxiliar da Faculdade de Odontologia da Universidade Federal do Rio Grande do Sul. Tem importante papel na área de ensino, de pesquisa e de prestação de serviços no campo da Saúde Bucal Coletiva.Moments of materia

    The dynamics of a visuo-spatial pattern memorizing

    No full text
    info:eu-repo/semantics/publishe

    Corticospinal control of the thumb-index grip depends on precision of force control: a transcranial magnetic stimulation and functional magnetic resonance imagery study in humans

    No full text
    International audienceThe corticospinal system (CS) is well known to be of major importance for controlling the thumb–index grip, in particular for force grading. However, for a given force level, the way in which the involvement of this system could vary with increasing demands on precise force control is not well-known. Using transcranial magnetic stimulation and functional magnetic resonance imagery, the present experiments investigated whether increasing the precision demands while keeping the averaged force level similar during an isometric dynamic low-force control task, involving the thumb–index grip, does affect the corticospinal excitability to the thumb–index muscles and the activation of the motor cortices, primary and non-primary (supplementary motor area, dorsal and ventral premotor and in the contralateral area), at the origin of the CS. With transcranial magnetic stimulation, we showed that, when precision demands increased, the CS excitability increased to either the first dorsal interosseus or the opponens pollicis, and never to both, for similar ongoing electromyographic activation patterns of these muscles. With functional magnetic resonance imagery, we demonstrated that, for the same averaged force level, the amplitude of blood oxygen level-dependent signal increased in relation to the precision demands in the hand area of the contralateral primary motor cortex in the contralateral supplementary motor area, ventral and dorsal premotor area. Together these results show that, during the course of force generation, the CS integrates online top-down information to precisely fit the motor output to the task's constraints and that its multiple cortical origins are involved in this process, with the ventral premotor area appearing to have a special role

    Spatio-temporal dynamics of a visuo-spatial pattern

    No full text
    info:eu-repo/semantics/publishe

    Dynamics of balancing a visuo-spatial pattern

    No full text
    info:eu-repo/semantics/publishe

    Tau and Kappa effect revisited: dynamics of balancing space and time in memory

    No full text
    In 3 experiments, the authors studied the organization of spatiotemporal information in memory. Stimuli consisted of configurations of dots, presented sequentially. The stimuli were either proportional, with interdot distances corresponding to interdot durations, or not proportional, with interdol distances not corresponding to interdot durations. After a learning phase, participants reproduced the spatial (Experiment 1), temporal (Experiment 2), or spatial and temporal (Experiment 3) characteristics of the target 60 times in succession. In the nonproportional conditions, effects of variable interdot durations or distances on the reproduction of, respectively, constant distances (tau effect) or durations (kappa effect) were observed, whereas no such effects were observed when variable distances or durations were to be produced. Tau and kappa effects influenced the accuracy but not the variability of responses. The results are discussed in light of the distinction between properties of the stabilized mental image and the process of stabilization.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Prior intention can locally tune inhibitory processes in the primary motor cortex: direct evidence from combined TMS-EEG

    No full text
    International audienceHuman subjects are able to prepare cognitively to resist an involuntary movement evoked by a suprathreshold transcranial magnetic stimulation (TMS) applied over the primary motor cortex (M1) by anticipatory selective modulation of corticospinal excitability. Uncovering how the sensorimotor cortical network is involved in this process could reveal directly how a prior intention can tune the intrinsic dynamics of M1 before any peripheral intervention. Here, we used combined TMS-EEG to study the cortical integrative processes that are engaged both in the preparation to react to TMS (Resist vs. Assist) and in the subsequent response to it. During the preparatory period, the contingent negative variation (CNV) amplitude was found to be smaller over central electrodes (FC1, C1, Cz) when preparing to resist compared with preparing to assist the evoked movement whereas a-oscillation power was similar in the two conditions. Following TMS, the amplitude of the TMS evoked-N100 component was higher in the Resist than in the Assist condition for some central electrodes (FCz, C1, Cz, CP1, CP3). Moreover, for six out of eight subjects, a single-trial-based analysis revealed a negative correlation between CNV amplitude and N100 amplitude. In conclusion, prior intention can tune the excitability of M1. When subjects prepare to resist a TMS-evoked movement, the anticipatory processes cause a decreased cortical excitability by locally increasing the inhibitory processes

    Dynamics of balancing space and time in Memory: Tau an Kappa effects revisited

    No full text
    In 3 experiments, the authors studied the organization of spatiotemporal information in memory. Stimuli consisted of configurations of dots, presented sequentially. The stimuli were either proportional, with interdot distances corresponding to interdot durations, or not proportional, with interdol distances not corresponding to interdot durations. After a learning phase, participants reproduced the spatial (Experiment 1), temporal (Experiment 2), or spatial and temporal (Experiment 3) characteristics of the target 60 times in succession. In the nonproportional conditions, effects of variable interdot durations or distances on the reproduction of, respectively, constant distances (tau effect) or durations (kappa effect) were observed, whereas no such effects were observed when variable distances or durations were to be produced. Tau and kappa effects influenced the accuracy but not the variability of responses. The results are discussed in light of the distinction between properties of the stabilized mental image and the process of stabilization.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
    corecore