603 research outputs found

    Relative persistence of AAV serotype 1 vector genomes in dystrophic muscle

    Get PDF
    The purpose of this study was to assess the behavior of pseudotyped recombinant adeno-associated virus type 1 (rAAV2/1) vector genomes in dystrophic skeletal muscle. A comparison was made between a therapeutic vector and a reporter vector by injecting the hindlimb in a mouse model of Limb Girdle Muscular Dystrophy Type 2D (LGMD-2D) prior to disease onset. We hypothesized that the therapeutic vector would establish long-term persistence through prevention of myofiber turnover. In contrast, the reporter vector genome copy number would diminish over time due to disease-associated muscle degradation

    Tissue specific promoters improve specificity of AAV9 mediated transgene expression following intra-vascular gene delivery in neonatal mice

    Get PDF
    The AAV9 capsid displays a high natural affinity for the heart following a single intravenous (IV) administration in both newborn and adult mice. It also results in substantial albeit relatively lower expression levels in many other tissues. To increase the overall safety of this gene delivery method we sought to identify which one of a group of promoters is able to confer the highest level of cardiac specific expression and concurrently, which is able to provide a broad biodistribution of expression across both cardiac and skeletal muscle. The in vivo behavior of five different promoters was compared: CMV, desmin (Des), alpha-myosin heavy chain (Ī±-MHC), myosin light chain 2 (MLC-2) and cardiac troponin C (cTnC). Following IV administration to newborn mice, LacZ expression was measured by enzyme activity assays. Results showed that rAAV2/9-mediated gene delivery using the Ī±-MHC promoter is effective for focal transgene expression in the heart and the Des promoter is highly suitable for achieving gene expression in cardiac and skeletal muscle following systemic vector administration. Importantly, these promoters provide an added layer of control over transgene activity following systemic gene delivery

    Elevated liver glycogenolysis mediates higher blood glucose during acute exercise in Barth syndrome

    Get PDF
    UNLABELLED: Barth syndrome (BTHS) is an X-linked recessive genetic disorder due to mutations in the Tafazzin (TAFAZZIN) gene that lead to cardiac and skeletal muscle mitochondrial dysfunction. Previous studies in humans with BTHS demonstrate that the defects in muscle mitochondrial oxidative metabolism result in an enhanced reliance on anaerobic metabolism during exercise to meet energy demands of muscular work. During exercise, the liver normally increases glucose production via glycogenolysis and gluconeogenesis to match the elevated rate of muscle glucose uptake and meet the ATP requirements of working muscle. However, the impact of Tafazzin deficiency on hepatic glucose production and the pathways contributing to hepatic glucose production during exercise is unknown. Therefore, the purpose of this study was to quantify in vivo liver gluconeogenesis and glycogenolysis in Tafazzin knockdown mice at rest and during acute exercise. METHODS: Male TAFAZZIN shRNA transgenic (TG) and wild-type (WT) mice completed exhaustive treadmill running protocols to test exercise tolerance. Mice underwent 2H- and 13C-stable isotope infusions at rest and during a 30-minute treadmill running bout to quantify hepatic glucose production and associated nutrient fluxes under sedentary conditions and during acute exercise. Circulating and tissue (skeletal muscle and liver) samples were obtained during and following exercise to assess static metabolite levels. RESULTS: TG mice reached exhaustion sooner during exhaustive treadmill running protocols and exhibited higher plasma lactate concentrations after exhaustive exercise compared to WT mice. Arterial glucose levels were comparable between genotypes at rest, but higher in TG mice compared to WT mice during exercise. Consistent with the higher blood glucose, TG mice showed increased endogenous glucose production owing to elevated glycogenolysis compared to WT mice during exercise. Total gluconeogenesis, gluconeogenesis from glycerol, gluconeogenesis from phosphoenolpyruvate, pyruvate cycling, total cataplerosis, and anaplerotic fluxes were similar between TG and WT mice at rest and during exercise. However, lactate dehydrogenase flux and TCA cycle fluxes trended higher in TG mice during exercise. Liver glycogen content in TG was higher in TG vs. controls. CONCLUSION: Our data in the Tafazzin knockdown mouse suggest that elevated anaerobic metabolism during rest and exercise previously reported in humans with BTHS are supported by the finding of higher hepatic glycogenolysis

    Failure of functional imaging with gallium-68-DOTA-D-Phe1-Tyr3-octreotide positron emission tomography to localize the site of ectopic adrenocorticotropic hormone secretion: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The diagnostic efficacy of biochemical and imaging modalities for investigating the causes of Cushing's syndrome are limited. We report a case demonstrating the limitations of these modalities, especially the inability of functional imaging to help localize the site of ectopic adrenocorticotropic hormone secretion.</p> <p>Case presentation</p> <p>A 37-year-old Arabian woman presented with 12 months of progressive Cushing's syndrome-like symptoms. Biochemical evaluation confirmed adrenocorticotropic hormone -dependent Cushing's syndrome. However, the anatomical site of her excess adrenocorticotropic hormone secretion was not clearly delineated by further investigations. Magnetic resonance imaging of our patient's pituitary gland failed to demonstrate the presence of an adenoma. Spiral computed tomography of her chest only revealed the presence of a non-specific 7 mm lesion in her left inferobasal lung segment. Functional imaging, including a positron emission tomography scan using 18-fluorodeoxyglucose and gallium-68-DOTA-D-Phe1-Tyr3-octreotide, also failed to show increased metabolic activity in the lung lesion or in her pituitary gland. Our patient was commenced on medical treatment with ketoconazole and metyrapone to control the clinical features associated with her excess cortisol secretion. Despite initial normalization of her urinary free cortisol excretion rate, levels began to rise eight months after commencement of medical treatment. Repeated imaging of her pituitary gland, chest and pelvis again failed to clearly localize a source of her excess adrenocorticotropic hormone secretion. The bronchial nodule was stable in size on serial imaging and repeatedly reported as having a nonspecific appearance of a small granuloma or lymph node. We re-explored the treatment options and endorsed our patient's favored choice of resection of the bronchial nodule, especially given that her symptoms of cortisol excess were difficult to control and refractory. Subsequently, our patient had the bronchial nodule resected. The histological appearance of the lesion was consistent with that of a carcinoid tumor and immunohistochemical analysis revealed that the tumor stained strongly positive for adrenocorticotropic hormone. Furthermore, removal of the lung lesion resulted in a normalization of our patient's 24-hour urinary free cortisol excretion rate and resolution of her symptoms and signs of hypercortisolemia.</p> <p>Conclusion</p> <p>This case report demonstrates the complexities and challenges in diagnosing the causes of adrenocorticotropic hormone -dependent Cushing's syndrome. Functional imaging may not always localize the site of ectopic adrenocorticotropic hormone secretion.</p

    Hypertensive emergency and type 2 myocardial infarction resulting from pheochromocytoma and concurrent capnocytophaga canimorsus infection

    Get PDF
    A diagnosis of myocardial infarction is made using a combination of clinical presentation, electrocardiogram and cardiac biomarkers. However, myocardial infarction can be caused by factors other than coronary artery plaque rupture and thrombosis. We describe an interesting case presenting with hypertensive emergency and type 2 myocardial infarction resulting from Pheochromocytoma associated with Capnocytophaga canimorsus infection from a dog bite. We also review current literature on the management of hypertensive emergency and Pheochromocytoma

    Control of hypothalamic-pituitary-adrenal stress axis activity by the intermediate conductance calcium-activated potassium channel, SK4

    Get PDF
    NON-TECHNICAL SUMMARY: Our ability to respond to stress is critically dependent upon the release of the stress hormone adrenocorticotrophic hormone (ACTH) from corticotroph cells of the anterior pituitary gland. ACTH release is controlled by the electrical properties of corticotrophs that are determined by the movement of ions through channel pores in the plasma membrane. We show that a calcium-activated potassium ion channel called SK4 is expressed in corticotrophs and regulates ACTH release. We provide evidence of how SK4 channels control corticotroph function, which is essential for understanding homeostasis and for treating stress-related disorders. ABSTRACT: The anterior pituitary corticotroph is a major control point for the regulation of the hypothalamicā€“pituitaryā€“adrenal (HPA) axis and the neuroendocrine response to stress. Although corticotrophs are known to be electrically excitable, ion channels controlling the electrical properties of corticotrophs are poorly understood. Here, we exploited a lentiviral transduction system to allow the unequivocal identification of live murine corticotrophs in culture. We demonstrate that corticotrophs display highly heterogeneous spontaneous action-potential firing patterns and their resting membrane potential is modulated by a background sodium conductance. Physiological concentrations of corticotrophin-releasing hormone (CRH) and arginine vasopressin (AVP) cause a depolarization of corticotrophs, leading to a sustained increase in action potential firing. A major component of the outward potassium conductance was mediated via intermediate conductance calcium-activated (SK4) potassium channels. Inhibition of SK4 channels with TRAM-34 resulted in an increase in corticotroph excitability and exaggerated CRH/AVP-stimulated ACTH secretion in vitro. In accordance with a physiological role for SK4 channels in vivo, restraint stress-induced plasma ACTH and corticosterone concentrations were significantly enhanced in gene-targeted mice lacking SK4 channels (Kcnn4(āˆ’/āˆ’)). In addition, Kcnn4(āˆ’/āˆ’) mutant mice displayed enhanced hypothalamic c-fos and nur77 mRNA expression following restraint, suggesting increased neuronal activation. Thus, stress hyperresponsiveness observed in Kcnn4(āˆ’/āˆ’) mice results from enhanced secretagogue-induced ACTH output from anterior pituitary corticotrophs and may also involve increased hypothalamic drive, thereby suggesting an important role for SK4 channels in HPA axis function

    PD-L1 and HIF-2Ī± Upregulation in Head and Neck Paragangliomas after Embolization

    Full text link
    Hypoxia activates pathways associated with tumor progression, metastatic spread, and alterations in the immune microenvironment leading to an immunosuppressive phenotype. In particular, the upregulation of PD-L1, a target for therapy with checkpoint inhibitors, is well-studied in several tumors. However, the relationship between hypoxia and PD-L1 regulation in pheochromocytomas and paragangliomas (PPGL), and especially in paragangliomas treated with embolization, is still largely unexplored. We investigated the expression of the hypoxia-marker HIF-2Ī± and of PD-L1 in a PPGL-cohort with and without embolization as potential biomarkers that may predict the response to treatment with HIF-2Ī± and checkpoint inhibitors. A total of 29 tumor samples from 25 patients who were operated at a single center were included and analyzed utilizing immunohistochemistry (IHC) for PD-L1 and HIF-2Ī±. Embolization prior to surgery was performed in seven (24%) tumors. PD-L1 expression in tumor cells of head and neck paragangliomas (HNPGLs) receiving prior embolization (median PD-L1 positivity: 15%) was significantly higher as compared to PD-L1 expression in HNPGLs without prior embolization (median PD-L1 positivity: 0%) (p = 0.008). Consistently, significantly more HNPGLs with prior embolization were positive for HIF-2Ī± (median nuclear HIF-2Ī± positivity: 40%) as compared to HNPGLs without prior embolization (median nuclear HIF-2Ī± positivity: 0%) (p = 0.016). Our results support the hypothesis that embolization with subsequent hypoxia leads to the upregulation of both PD-L1 and HIF-2Ī± in HNPGLs, and could thus facilitate targeted treatment with HIF-2Ī± and checkpoint inhibitors in the case of inoperable, locally advanced, or metastatic disease
    • ā€¦
    corecore