2,754 research outputs found

    Cooling dynamics of a dilute gas of inelastic rods: a many particle simulation

    Full text link
    We present results of simulations for a dilute gas of inelastically colliding particles. Collisions are modelled as a stochastic process, which on average decreases the translational energy (cooling), but allows for fluctuations in the transfer of energy to internal vibrations. We show that these fluctuations are strong enough to suppress inelastic collapse. This allows us to study large systems for long times in the truely inelastic regime. During the cooling stage we observe complex cluster dynamics, as large clusters of particles form, collide and merge or dissolve. Typical clusters are found to survive long enough to establish local equilibrium within a cluster, but not among different clusters. We extend the model to include net dissipation of energy by damping of the internal vibrations. Inelatic collapse is avoided also in this case but in contrast to the conservative system the translational energy decays according to the mean field scaling law, E(t)\propto t^{-2}, for asymptotically long times.Comment: 10 pages, 12 figures, Latex; extended discussion, accepted for publication in Phys. Rev.

    Functional Characterisation of Alpha-Galactosidase A Mutations as a Basis for a New Classification System in Fabry Disease

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.The study has been supported partially by an unrestricted scientific grant from Shire Human Genetic Therapies (Germany

    Instability and `Sausage-String' Appearance in Blood Vessels during High Blood Pressure

    Get PDF
    A new Rayleigh-type instability is proposed to explain the `sausage-string' pattern of alternating constrictions and dilatations formed in blood vessels under influence of a vasoconstricting agent. Our theory involves the nonlinear elasticity characteristics of the vessel wall, and provides predictions for the conditions under which the cylindrical form of a blood vessel becomes unstable.Comment: 4 pages, 4 figures submitted to Physical Review Letter

    Numerically stable computation of CreditRisk+

    Get PDF
    The CreditRisk+ model launched by CSFB in 1997 is widely used by practitioners in the banking sector as a simple means for the quantification of credit risk, primarily of the loan book. We present an alternative numerical recursion scheme for CreditRisk+, equivalent to an algorithm recently proposed by Giese, based on well-known expansions of the logarithm and the exponential of a power series. We show that it is advantageous to the Panjer recursion advocated in the original CreditRisk+ document, in that it is numerically stable. The crucial stability arguments are explained in detail. Furthermore, the computational complexity of the resulting algorithm is stated

    Identification of tetrahydrocarbazoles as novel multifactorial drug candidates for treatment of Alzheimer's disease

    Get PDF
    Alzheimer's disease (AD) is a progressive neurodegenerative brain disorder and the most frequent cause of dementia. To date, there are only a few approved drugs for AD, which show little or no effect on disease progression. Impaired intracellular calcium homeostasis is believed to occur early in the cascade of events leading to AD. Here, we examined the possibility of normalizing the disrupted calcium homeostasis in the endoplasmic reticulum (ER) store as an innovative approach for AD drug discovery. High-throughput screening of a small-molecule compound library led to the identification of tetrahydrocarbazoles, a novel multifactorial class of compounds that can normalize the impaired ER calcium homeostasis. We found that the tetrahydrocarbazole lead structure, first, dampens the enhanced calcium release from ER in HEK293 cells expressing familial Alzheimer's disease (FAD)-linked presenilin 1 mutations. Second, the lead structure also improves mitochondrial function, measured by increased mitochondrial membrane potential. Third, the same lead structure also attenuates the production of amyloid-beta (A beta) peptides by decreasing the cleavage of amyloid precursor protein (APP) by beta-secretase, without notably affecting alpha- and gamma-secretase cleavage activities. Considering the beneficial effects of tetrahydrocarbazoles addressing three key pathological aspects of AD, these compounds hold promise for the development of potentially effective AD drug candidates

    Least - change bidirectional model transformation With QVT- R and ATL

    Get PDF
    QVT Relations (QVT-R) is the standard language proposed by the OMG to specify bidirectional model transformations. Unfortunately, in part due to ambiguities and omissions in the original semantics, acceptance and development of effective tool support has been slow. Recently, the checking semantics of QVTR has been clarified and formalized. In this article we propose a QVT-R tool that complies to such semantics. Unlike any other existing tool, it also supports metamodels enriched with OCL constraints (thus avoiding returning ill-formed models), and proposes an alternative enforcement semantics that works according to the simple and predictable “principle of least change”. The implementation is based on an embedding of both QVT-R transformations and UML class diagrams (annotated with OCL) in Alloy, a lightweight formal specification language with support for automatic model finding via SAT solving. We also show how this technique can be applied to bidirectionalize ATL, a popular (but unidirectional) model transformation language.This work is funded by ERDF-European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness) and by national funds through the FCT-Fundacao para a Ciencia e a Tecnologia (Portuguese Foundation for Science and Technology) within project FCOMP-01-0124-FEDER-020532. The first author is also sponsored by FCT grant SFRH/BD/69585/2010. The authors would also like to thank all anonymous reviewers for the valuable comments and suggestions

    Fluctuation-Facilitated Charge Migration along DNA

    Full text link
    We propose a model Hamiltonian for charge transfer along the DNA double helix with temperature driven fluctuations in the base pair positions acting as the rate limiting factor for charge transfer between neighboring base pairs. We compare the predictions of the model with the recent work of J.K. Barton and A.H. Zewail (Proc.Natl.Acad.Sci.USA, {\bf 96}, 6014 (1999)) on the unusual two-stage charge transfer of DNA.Comment: 4 pages, 2 figure

    Velocity Dependence Of One- And Two-electron Processes In Intermediate-velocity Ar16++He Collisions

    Get PDF
    We report investigations of one- and two-electron processes in the collisions of 0.9-keV/u to 60-keV/u (vp=0.19-1.55 a.u.) Ar16+ ions with He targets. The cross sections for these processes were measured by observing the final charges of the Ar ions and the recoiling target ions in coincidence. The average Q values for the capture channels were determined by measuring the longitudinal momenta of the recoiling target ions. Single capture (SC) is the dominant process and is relatively independent of the projectile energy. The two-electron transfer-ionization (TI) process is the next largest and slowly increases with projectile energy. The Q values for both SC and TI decrease with increasing projectile energy. Our data thereby suggest that electrons are captured into less tightly bound states as the collision velocity is increased. Both double capture and single ionization are much smaller and fairly independent of the projectile energy. The energy independence of SI is somewhat surprising as our energy range spans the region of the target electron velocity where ionization would be expected to increase. Our analysis suggests that the ionization process is being suppressed by SC and TI processes. © 1993 The American Physical Society

    Coefficient of restitution for elastic disks

    Full text link
    We calculate the coefficient of restitution, ϵ\epsilon, starting from a microscopic model of elastic disks. The theory is shown to agree with the approach of Hertz in the quasistatic limit, but predicts inelastic collisions for finite relative velocities of two approaching disks. The velocity dependence of ϵ\epsilon is calculated numerically for a wide range of velocities. The coefficient of restitution furthermore depends on the elastic constants of the material via Poisson's number. The elastic vibrations absorb kinetic energy more effectively for materials with low values of the shear modulus.Comment: 25 pages, 12 Postscript figures, LaTex2
    • …
    corecore