
Noname manuscript No.
(will be inserted by the editor)

Least-change Bidirectional Model Transformation with QVT-R
and ATL

Nuno Macedo · Alcino Cunha

Received: date / Accepted: date

Abstract QVT Relations (QVT-R) is the standard
language proposed by the OMG to specify bidirectional
model transformations. Unfortunately, in part due to
ambiguities and omissions in the original semantics, ac-
ceptance and development of effective tool support has
been slow. Recently, the checking semantics of QVT-
R has been clarified and formalized. In this article we
propose a QVT-R tool that complies to such semantics.
Unlike any other existing tool, it also supports meta-
models enriched with OCL constraints (thus avoiding
returning ill-formed models), and proposes an alter-
native enforcement semantics that works according to
the simple and predictable “principle of least change”.
The implementation is based on an embedding of both
QVT-R transformations and UML class diagrams (an-
notated with OCL) in Alloy, a lightweight formal specifi-
cation language with support for automatic model find-
ing via SAT solving. We also show how this technique
can be applied to bidirectionalize ATL, a popular (but
unidirectional) model transformation language.

Keywords Model transformation · Bidirectional
transformation · Least-change principle · QVT-R ·
ATL · Alloy

This work is funded by ERDF - European Regional Devel-
opment Fund through the COMPETE Programme (opera-
tional programme for competitiveness) and by national funds
through the FCT - Fundação para a Ciência e a Tecnologia
(Portuguese Foundation for Science and Technology) within
project FCOMP-01-0124-FEDER-020532. The first author is
also sponsored by FCT grant SFRH/BD/69585/2010.

Nuno Macedo · Alcino Cunha
HASLAB—High Assurance Software Laboratory
INESC TEC & Universidade do Minho
Braga, Portugal
E-mail: {nfmmacedo,alcino}@di.uminho.pt

1 Introduction

Model-Driven Engineering (MDE) is an approach to
software development that focuses on models as the
primary development entity. In MDE different models
may capture different views of the same system (typ-
ically different models are used to specify structural
and dynamic issues) or may be used at different levels
of abstraction (code is obtained by refining platform-
independent models to platform-specific ones). All these
(possibly overlapping) models should be kept somehow
consistent, and changes to one model should be prop-
agated to all the others in a consistent manner. Ide-
ally, specifications of transformations between models
should be bidirectional, in the sense that a single arti-
fact denotes transformations that can be used in both
directions. Moreover, these transformations cannot just
map a source to a target model and vice-versa: if some
source information is discarded by the transformation,
to propagate an update in the target back to a new
consistent source, access to the original source model
is also required, so that discarded information can be
recovered.

To support the MDE approach the Object Manage-
ment Group (OMG) has launched the Model-Driven
Architecture (MDA) initiative, which prescribed the us-
age of MOF [43] (usually presented as UML class dia-
grams [41]) and OCL [42] for the specification of (object
oriented) models and constraints over them. To specify
transformations between models, the OMG proposed
the Query/View/Transformation (QVT) standard [40].
While QVT provides three different languages for the
specification of transformations, the most relevant to
MDE is the QVT Relations (QVT-R) language, that
allows the specification of a bidirectional transforma-
tion by defining a single declarative consistency relation

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634115?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Nuno Macedo, Alcino Cunha

between two (or more) meta-models. Given this spec-
ification the transformation can be run in two modes:
checkonly, to test if two models are consistent accord-
ing to the specified relation; or enforce, that given two
models and an execution direction (picking one of them
as the target) updates the target model in order to
recover consistency. The standard prescribes a “check-
before-enforce” semantics, that is, enforce mode cannot
modify the target if the models happen to be already
consistent according to checking semantics.

Effective tool support for QVT-R has been slow to
emerge, which hinders the universal adoption of this
standard. In part, this is due to the incomplete and am-
biguous semantics defined in [40]. While the checking
semantics has recently been clarified and formalized [47,
4,18], the enforcement semantics still remains largely
obscure and even incompatible with other OMG stan-
dards, despite some recent efforts to provide a formal
specification [5]. Namely, it completely ignores possible
OCL constraints over the meta-models, thus allowing
updates that can lead to ill-formed target models. Like-
wise, none of the existing QVT-R model transformation
tools supports such constraints, which makes them un-
usable in many realistic scenarios. Unfortunately, there
are other problems that affect them. Some do not even
comply to the standard syntax and support only a “QVT-
like” language (including not providing both running
modes as required by the standard). Others do not sup-
port truly non-bijective bidirectional transformations
(for example, ignoring the original target model in the
enforce mode). Some purposely disregard the intended
QVT-R semantics (including checking semantics) and
implement a new (still unclear and ambiguous) one. In
most cases it is not clear if the supported checking se-
mantics is equivalent to the one formalized in [47,4,18].
And finally, none clarifies the problems and ambiguities
in the standard concerning enforcement semantics, and
none presents a simple enough alternative for this mode
that makes its behavior predictable to the user.

In this article, we propose a QVT-R bidirectional
model transformation tool that addresses all these is-
sues. Both the meta-models and transformation specifi-
cations may be annotated with OCL, and it supports a
large subset of the standard QVT-R language, including
execution of both modes independently as prescribed.
The main restriction is that recursion must be non-
circular (or well-founded), which is satisfied by most
of the interesting case-studies. The checking semantics
closely follows the one specified in the standard, be-
ing equivalent to the one formalized in [47,4,18]. Fi-
nally, instead of the ambiguous (and OCL incompati-
ble) enforcement semantics proposed in the standard,
our tool follows the clear and predictable principle of

least change [35], and just returns updated consistent
target models that are at a minimal distance from the
original. In particular, the “check-before-enforce” pol-
icy required by QVT-R is trivially satisfied by this se-
mantics. Our tool supports two different mechanisms
to measure the distance between two models: the graph
edit distance [51], that just counts insertions and dele-
tions of nodes and edges in the graph that corresponds
to a model; and a variation where the user is allowed
to parameterize which operations should count as valid
edits, by attaching them to the meta-model and speci-
fying their pre- and post-conditions in OCL.

To achieve this, we propose an embedding of both
QVT-R transformations and UML class diagrams (an-
notated with OCL) in Alloy [23], a lightweight formal
specification language with support for automatic model
finding via SAT solving. Alloy is based on relational
logic, which has been shown to be very effective to val-
idate and verify object-oriented models. Its connection
with the MDA has also been explored before through
tools that translate UML class diagrams annotated with
OCL to Alloy [1,9], on top of which we build our embed-
ding. The proposed technique has been implemented as
part of Echo, a tool for the consistent exploration and
transformation of models through model finding [33],
and has already proved effective in debugging existing
transformations, namely helping us unveiling several er-
rors in the well-known object-relational mapping that
illustrates the QVT-R specification [40].

Our approach is sufficiently general to be applied to
other model transformation languages. To exemplify,
we apply our bidirectionalization technique to a signi-
ficative subset of the Atlas Transformation Language
(ATL) [24], a widely used, but unidirectional, model
transformation language. From the specification of an
ATL forward transformation we first infer a consistency
relation between source and target meta-models, which
then enables us to apply our bidirectionalization engine
and automatically obtain a backward transformation
that follows the principle of least change.

The present article is an extended version of a previ-
ous conference paper [31]. The application of our tech-
nique to bidirectionalize ATL is the main new contri-
bution, but in addition to the previous content, this
article describes the proposed technique with more de-
tail, how it was deployed in a user-friendly tool, and in-
cludes a new case-study and an extensive evaluation to
access its effectiveness. Section 2 introduces the QVT-
R language, describes the standard checking semantics,
presents some of the problems with the enforcement
semantics, and proposes and formalizes a simpler alter-
native based on the principle of least change. Section 3
presents our embedding of UML class diagrams (anno-

Least-change Bidirectional Model Transformation with QVT-R and ATL 3

tated with OCL) and QVT-R transformations in Alloy.
Section 4 explores how the proposed technique can also
be used to bidirectionalize ATL. Section 5 describes how
it was deployed as part of the Echo framework as an
Eclipse IDE plugin for managing of model consistency,
while Section 6 presents the evaluation and scalability
tests. Finally, Section 7 analyzes related work, while
Section 8 draws conclusions and points to future work.

2 QVT Relations

In this section the basic concepts and the semantics of
the QVT-R language are introduced. A more detailed
presentation can be found in the OMG standard [40].

2.1 Basic Concepts

A QVT-R specification consists of a transformation T

between a set of meta-models that states under which
conditions their conforming models are considered con-
sistent. For the remainder of this article, we will restrict
ourselves to transformations between two meta-models
for simplicity purposes, although most concepts could
be generalized to multi-directional transformations [32].
From T , QVT-R requires the inference of three arti-
facts: a relation T ⊆ M × N that tests if two models
m ∈ M and n ∈ N are consistent and transformations−→
T :M ×N → N and

←−
T :M ×N → M that propagate

changes on a source model to a target model, restoring
consistency between the two. Thus, transformations can
be executed in two modes: checkonly mode, where the
models are simply checked for consistency, denoted as
T (m,n); and enforce mode, where

−→
T or

←−
T is applied

to inconsistent models in order to restore consistency,
depending on which of the two models should be up-
dated. Note that both transformations take as extra ar-
gument the original opposite model: if models m ∈ M

and n ∈ N are initially consistent, and m is updated to
m ′,
−→
T takes as input both m ′ and n to produce the new

consistent n ′. This way the system is able to retrieve
from n information discarded by the transformation.
This formalization of QVT-R is inspired by the con-
cept of maintainer [35], and was first proposed in [46].
Naturally, when the transformations propagate an up-
date the result is expected to be consistent. Formally,
the transformation is said to be correct if:

∀ m ∈ M ,n ∈ N :

T (m,
−→
T (m,n)) ∧T (

←−
T (m,n),n)

The transformations are also required to follow a “check-
before-enforce” policy (also referred to as hippocratic-
ness [46]), that can be formalized as follows:

∀ m ∈ M ,n ∈ N :

T (m,n)⇒
−→
T (m,n) = n ∧

←−
T (m,n) = m

A QVT-R transformation is defined by a set of rela-
tions. A relation consists of a domain pattern for each
meta-model of the transformation, that defines which
objects of the model it relates by pattern matching.
It also may include when and where constraints, that
act as a kind of pre- and post-conditions for the re-
lation application, respectively. These constraints may
contain arbitrary OCL expressions.[In fact, the stan-
dard does not allow arbitrary OCL expressions...] The
abstract syntax of a relation is the following:
[top] relation R {

[variable declarations]
domain M a : A { πM }
domain N b : B { πN }
[when { ψ }]
[where { φ }]

}

In relation R, the domain pattern for meta-model M
consists of a domain variable a and a template πM that
binds the values of some of its properties (attributes or
related associations), which candidate objects of type
A must match. Likewise for the domain pattern πN for
meta-model N . To simplify the presentation, the above
syntax restricts relations to have exactly one domain
variable per meta-model. If the multiplicity of a nav-
igated property R is different from one, pattern tem-
plates involving it denote inclusion tests, i.e., a pattern
R = a denotes the test a ∈ R. Properties can also be
navigated backwards by using the opposite keyword.
Templates can be complemented with arbitrary OCL
constraints. Relations can optionally be marked as top,
in which case they must hold for all objects of the speci-
fied class. Otherwise, they are only tested for particular
objects when invoked in when or where clauses.

2.2 Examples

As a first example, we will define a simplified version
of the classic object-relational mapping transformation
that illustrates the QVT-R specification [40]. Although
simplified, this version still exhibits some of the prob-
lems of the original version, which we will describe in
the next section. Figure 1 depicts a simplified version of
the object (UML) and relational (RDBMS) meta-models,
including signatures of possible edit operations. Fig-
ure 2 defines a transformation uml2rdbms, whose goal
is to map every persistent Class in a Package to a
Table in a Schema with the same name. Each Table
should contain a Column for each Attribute (includ-
ing inherited ones) of the corresponding Class. A con-
straint of the UML meta-model that cannot be captured

4 Nuno Macedo, Alcino Cunha

namespace

general

column
setName (n : String)
setPersistent ()
addAttribute (n : String)
remAttribute (n : String)
moveAttribute (n,m: String)

name : String
persistent : Bool

Class

setName (n : String)
name : String

Attribute
attribute

setName (n : String)
name : String

Column

setName (n : String)
addColumn (n : String)
remColumn (n : String)

name : String
Table1 * *1

*

*

setName (s : String)
addClass (n : String)
remClass (n : String)

name : String
Package

setName (n : String)
addTable (n : String)
remTable (n : String)

name : String
Schema

schema
1*

* 1

Fig. 1: Class diagrams of the UML and RDBMS meta-models.

by class diagrams, neither QVT-R key constraints, is
the requirement that the association general should
be acyclic. One must resort to OCL to express it, for
example by adding the following invariant to the UML
meta-model:

context Class inv:
not self.closure(general)->includes(self)

The constraint relies on the transitive closure operator,
which has recently been introduced to the OCL stan-
dard [42, p. 168].

There are two top relations: P2S that maps each
Package to a Schema with the same name, and C2T that
maps each Class to a Table with the same name. To
ensure that a Class is only mapped to a Table if the
respective Package and Schema are related, relation
C2T invokes P2S (with concrete domain variables) in
the when clause. For a concrete Class c and Table t,
C2T also calls relation A2C in the where clause, that
will be responsible to map each Attribute in c to a
Column in t. A2C directly calls PA2C, that translates
each Attribute directly declared in c to a Column in
t, and SA2C, that recursively calls A2C on the general
Class of c, so that each inherited Attribute is also
translated to a Column in t.

Another classical bidirectional model transforma-
tion example is that of the expansion/collapse of a hi-
erarchical state machine (HSM). In a HSM states may
themselves contain sub-states (in which case they are
called composite states), as defined by the HSM meta-
model in Fig. 3. Transitions may exist between sub-
states and states outside their owning composite state.
Like with the UML meta-model, the HSM meta-model
also requires an additional OCL constraint to avoid
circular containment. One advantage of HSMs is ab-
straction, and a HSM can be collapsed into a non-
hierarchical state machine (NHSM) that presents only
top-level states, inheriting the incoming and outcoming
transitions of their sub-states. The NHSM meta-model is
similar to HSM without the container association and
the CompositeState class, and thus is omitted.

The consistency relation between a HSM and its
collapsed view is specified by the hsm2nhsm QVT-R
transformation in Fig. 4. Top relation S2S relates every
State of a HSM with a NHSM State with the same name
as the top-level State owning it. The where clause of
top relation S2S tests if the HSM State is top-level or
not: if so, TS2S is called, which matches itself to a NHSM
State with the same name; otherwise, SS2S is called,
which recursively calls S2S with its container State.
Each Transition is mapped by the top relation T2T,
which can be trivially specified by resorting to a where
clause stating that two Transitions are related if their
source and target States are related by S2S. Since
sub-states in a HSM are related to top-states in a NHSM,
every Transition is automatically pushed up to the
top-states.

2.3 Checking Semantics

QVT-R’s checking semantics assesses if two models are
consistent according to the specified transformation.
Although the consistency check is by itself important,
it is also an essential feature in enforce mode since the
latter must “check-before-enforce”. The semantics of a
relation differs whether it is invoked at the top-level
or with concrete domain variables in when and where
clauses. The specified top-level semantics is directional.
As such, from each relation R two consistency relations
RI :M ×N and RJ :M ×N must be derived, to check
if m : M is R-consistent with n : N and if n : N is
R-consistent with m : M , respectively. The former can
be formalized as follows:

RI (m :M ,n :N) ≡ ∀ xs | ψB ∧ πM ⇒ (∃ ys | πN ∧ φB)
where xs = fv(ψ ∧ πM) ∪ {a :A},

ys = (fv(πN ∧ φ) ∪ {b : B })− xs

Here fv(e) retrieves the set of free variables from the
expression e, so xs denotes the set of variables used in
the when constraint and the source pattern, while ys is
the set of variables used exclusively in the where con-
straint and in the target pattern. Given a formula ψ, ψB

Least-change Bidirectional Model Transformation with QVT-R and ATL 5

transformation uml2rdbms (uml:UML,rdb:RDBMS) {
// PackageToSchema
top relation P2S {
n:String;
domain uml p:Package { name = n };
domain rdb s:Schema { name = n };

}

// ClassToTable
top relation C2T {

n:String;
domain uml c:Class {

persistent = true,
namespace = p:Package{},
name = n

};
domain rdb t:Table {

schema = s:Schema{},
name = n

};
when { P2S(p,s); }
where { A2C(c,t); }

}

// AttributeToColumn
relation A2C {

domain uml c:Class {};
domain rdb t:Table {};
where { PA2C(c,t) and SA2C(c,t); }

}

// PrimitiveAttributeToColumn
relation PA2C {
n:String;
domain uml c:Class {

attribute = a:Attribute { name = n }
};
domain rdb t:Table {

column = cl:Column { name = n }
};

}

// SuperAttributeToColumn
relation SA2C {
domain uml c:Class { general = g:Class {} };
domain rdb t:Table {};
where { A2C(g,t); }

}
}

Fig. 2: Simplified version of the uml2rdbms QVT-R
transformation.

denotes the same formula with all relation invocations
replaced by the respective directional version. This se-
mantics is rather straightforward: essentially, for every
element a : A that satisfies the when condition ψ and
matches the πM domain pattern, there must exist an
element b : B that satisfies the where condition φ and
matches the πN domain pattern. The semantics in the
opposite direction is dual. Two models are consistent

target
source* 1

* 1

machine

addTransition(s,t : String)
addTopState(n : String)
addSubState(n,m : String)

name : String
StateMachine

name : String
State

1
*

Transition

CompositeState

container

0..1

*machine

1

*

Fig. 3: Class diagram of the HSM meta-model.

according to a QVT-R transformation T if they are
consistent for all top relations in both directions. As-
suming that RT is the set of all top level relations of
transformation T we have:

T (m :M ,n :N) ≡ ∀ R :RT | RI (m,n) ∧ RJ (m,n)

The QVT-R standard [40] defines rather precisely
the top-level semantics, but is omissive about the se-
mantics of relations invoked with concrete domain vari-
ables. Recent works on the formalization of QVT-R
check semantics [47,4,18] clarify that it is essentially the
same as the top-level—still directional, but defined over
specific objects by fixing the domain variables. As such,
from each relation R with domain variables of type A

and B , two consistency relations RB :M×N×A×B and
RC :M ×N ×A×B are inferred, to check if two concrete
objects a and b (belonging to models m :M and n :N ,
respectively) are consistent: [Just a comment... not to
be taken too seriously, but probably it would be more
precise if in quantifications we indexed the types by the
model, to mean it is a quantification over the elements
of that type in that particular model. This would ac-
tually make the transition to the local state idiom in
Alloy more smooth.]

RB (m :M ,n :N , a :A, b : B) ≡
∀ xs | ψB ∧ πM ⇒ (∃ ys | πN ∧ φB)
where xs = fv(ψ ∧ πM),

ys = fv(πN ∧ φ)− xs

Although it may be tempting (and probably more intu-
itive) to define RI in terms of RB, that is RI (m,n) ≡
∀ a : A | ∃ b : B | RB (m,n, a, b), this definition is not
semantically equivalent to the one presented above, as
already discussed in [4]. For instance, consider the se-
mantics (in the direction of UML) of relation PA2C from
the uml2rdbms transformation:

PA2CJ (uml : UML, rdb : RDBMS) ≡
∀ t : Table, cl : Column,n : String |
cl ∈ t .column ∧ cl .name = n ⇒
∃ c : Class, a : Attribute |

6 Nuno Macedo, Alcino Cunha

transformation hsm2nhsm (hsm : HSM, nhm : NHSM) {
// StateMachineToStateMachine
top relation M2M {
n:String;
domain hsm s:StateMachine { name = n };
domain nhm t:StateMachine { name = n };

}

// StateToState
top relation S2S {

domain hsm s:State {
machine = sm:StateMachine{} };

domain nhm t:State {
machine = tm:StateMachine{} };

when { M2M(sm,tm); }
where {

if s.container->isEmpty() then TS2S(s,t)
else SS2S(s,t) endif;

}
}

// TopState2State
relation TS2S {
n: String;
domain hsm s:State { name = n };
domain nhm t:State { name = n };

}

// SubState2State
relation SS2S {
domain hsm s:State {};
domain nhm t:State {};
where { S2S(s.container,t); }

}

// TransitionToTransition
top relation T2T {
domain hsm ht:Transition {

target = htt:State{},
source = hts:State{}

};
domain nhm nt:Transition {

target = ntt:State{},
source = nts:State{}

};
where { S2S(hts,nts) and S2S(htt,ntt); }

}
}

Fig. 4: The hsm2nhsm QVT-R transformation.

a ∈ c.attribute ∧ a.name = n

PA2CC (uml : UML, rdb : RDBMS, c : Class, t : Table) ≡
∀ cl : Column,n : String |
cl ∈ t .column ∧ cl .name = n ⇒
∃ a : Attribute |
a ∈ c.attribute ∧ a.name = n

Consider a simple UML model where a Class a with an
Attribute x extends a Class b with an Attribute
y . Consider also a RDBMS model with a single Table a

containing a Column x and a Column y . While PA2CJ

holds for this pair of models, PA2CC returns false for
every pair of Class and Table. Of course, there are
cases where the two semantics are equivalent. For in-
stance, C2T could be defined as a non-top relation and
be called from the where clause of P2S. The behavior is
equivalent because the only free variable (n) is bound
to a unitary attribute.

Due to this asymmetry and the directionality of the
semantics, QVT-R transformations may not have the
expected behavior. In particular, uml2rdbms as defined
in the standard does not have a bidirectional seman-
tics, in the sense that the only pairs of consistent and
valid finite models are ones where all classes are non-
persistent and there are no tables. To see why this hap-
pens, consider the relations A2C and SA2C when checked
in the direction of UML. These relations call each other
recursively, and their non top-level semantics is:

A2CC (uml : UML, rdb : RDBMS, c : Class, t : Table) ≡
PA2CC (uml , rdb, c, t) ∧ SA2CC (uml , rdb, c, t)

SA2CC (uml : UML, rdb : RDBMS, c : Class, t : Table) ≡
∃ g : Class | g ∈ c.general ∧ A2CC (uml , rdb, g , t)

If the transformation takes into account the OCL con-
straint requiring general to be acyclic, the predicate
A2CC (uml , rdb, c, t) never holds in a finite model, since
c will be required to have an infinite ascending chain
of general objects. This is due to the under-restrictive
SA2C domain pattern in the RDBMS side (empty in this
case), that requires every Table to have a matching
Class with a general, which, due to recursion, is also
required to have a general, and so on. This is but
one of the problems that occur in the original specifica-
tion of this transformation, and is another example of
the ambiguities that prevail in the QVT standard [40]:
while it requires consistency to be checked in both di-
rections, the case-study used to illustrate it was clearly
not developed with bidirectionality in mind. Note that
checking consistency only in the direction of RDBMS does
not suffice, since, for example, it will not prevent spu-
rious tables to appear in the target schema.

Concerning recursion we can distinguish two situ-
ations: one is well-founded recursion, where the call
graph of the transformation contains a loop, but in any
evaluation it is traversed only finitely many times; an-
other is cyclic (or infinite) recursion, where such a loop
may actually be traversed infinitely many times (e.g.,
when a relation directly or indirectly calls itself with the
same arguments). The semantics of well-founded recur-
sion is not problematic, but the standard is omissive
about what should happen when infinite recursion oc-
curs. A possible interpretation is that it should not be
allowed, although in general it is undecidable to detect

Least-change Bidirectional Model Transformation with QVT-R and ATL 7

if that is the case. Similarly to some QVT-R formaliza-
tions [47,18], the embedding presented in this article is
not well-defined when infinite recursion occurs.

Recently, a formal semantics of QVT-R was pro-
posed [4] that is well-defined even in presence of infinite
recursion, by resorting to modal mu calculus. To see
why taking OCL constraints into account is fundamen-
tal, a transformation conforming to this semantics, but
that ignores the requirement that general is acyclic,
would consider an (ill-formed) UML model with a sin-
gle persistent Class a that generalizes itself consistent
with a RDBMS model with a Table a.

To prevent the problem in the uml2rdbms trans-
formation described above, one could tag each Column
with the path to the particular general they originated
from, and then refine the RDBMS domain pattern to pre-
vent problematic recursive calls. A simpler alternative is
to resort to the transitive closure operation, and map at
once every declared or inherited Attribute of a given
Class to a Column of the respective Table. In this new
version of uml2rdbms (that will be considered in the
remainder of the article), A2C, PA2C and SA2C are re-
placed by the following alternative definition of A2C:
relation A2C {
cn:String; a:Attribute; g:Class;
domain uml c:Class {} {
(c->closure(general)->includes(g) or g = c) and
g.attributes->includes(a) and a.name = cn

};
domain rdb t:Table {

column = cl:Column { name = cn }
};

}

The additional OCL constraint in the UML domain pat-
tern acts as a pre-condition when applying the trans-
formation in the direction of RDBMS, and as a post-
condition in the other direction. As such, it could not
be specified in the when clause, since it would act as
(an undesired) pre-condition for both scenarios.

Unlike uml2rdbms, the recursive version of hsm2nhsm
does produce the intended behavior. The reason is that,
while attributes in uml2rdbmsmay give origin to columns
in multiple tables, HSM transitions in hsm2nhsm give rise
to a single NHSM transition. As a consequence, unlike
A2C that must be defined over classes, T2T can be de-
fined directly over transitions. These particularities are
difficult to grasp at design time, thus effective tool sup-
port for QVT-R is essential for the development consis-
tency relations that embody the intentions of the user.

2.4 Enforcement Semantics

Despite showing many ambiguities and omissions, we
believe that, due to the reasons presented next, the en-

forcement semantics intended in the standard for this
mode is quite undesirable. Instead, we propose an al-
ternative that is easy to formalize, more flexible, and
more predictable to the end-user.

In the QVT-R standard, update propagation is re-
quired to be deterministic. This is a desirable prop-
erty, since it makes its behavior more predictable. How-
ever, to ensure determinism, every transformation is
required to follow very stringent syntactic rules that
reduce update translation to a trivial imperative pro-
cedure. Namely, it should be possible to order all con-
straints in a relation (except for the target domain pat-
tern), such that the value of every free variable is fixed
by a previous constraint. Although not clarified in the
standard, this means that every relation invoked in when
and where constraints is either invoked with previously
bound variables, or required to also be deterministic,
even if the intention was to only make update prop-
agation deterministic. For example, in transformation
uml2rdbms, update propagation in the RDBMS direction
will only be deterministic for relation C2T if at most one
s is consistent with p according to relation P2S (note
that s is still free in the when clause). In this particular
example that happens to be true, but in general such
determinism is undesirable since it forces relations to be
one-to-one mappings, limiting the expressiveness of the
language. Moreover, it defeats the purpose of a declar-
ative transformation language, since one is forced to
think in terms of imperative execution and write more
verbose transformations. For example, our simpler ver-
sion of A2C using transitive closure would not be al-
lowed, since the value of g is not known a priori when
enforcing consistency in the direction of UML.

Another problem is the predictability of update prop-
agation. Being deterministic is just part of the story—it
should be clear to the user why some particular element
was chosen to be updated instead of another. The only
mechanism proposed by QVT-R to control updatabil-
ity are keys. For example, one could add the statement
key Table (name, schema); to the running example
to assert that each Table is uniquely identified by the
pair of properties name and schema. If an update is re-
quired on a Table to restore consistency (for example,
when an Attribute is added to a Class), such key is
used to find a matching Table. When found, an update
is performed, otherwise a new Table is created. This
works well when all domains involved in relations have
natural keys, which again points to one-to-one map-
pings only, but fails if such keys do not exist. In those
cases, the standard prescribes that update propagation
should always be made by means of creation of new ele-
ments, even if sometimes a simple update to an existing
element would suffice. Since creation requires defaults

8 Nuno Macedo, Alcino Cunha

for mandatory (multiplicity one) properties, this would
result in models with little resemblance with the origi-
nal (which would basically be discarded).

Our alternative enforcement semantics is based on
the principle of least change, first proposed in the con-
text of maintainers [35], and that promotes predictabil-
ity by requiring updates to be as small as possible.
QVT-R “check-before-enforce” policy is just a particular
case of this more general principle. Let∆M :M×M → N
be an operation that computes the update distance be-
tween M models. Then, the principle of least change
states that the models returned by the transformations−→
T and

←−
T are just the consistent models closest to the

original. Formally, we have:

∀ m ∈ M ,n,n ′ ∈ N :T (m,n ′)⇒
∆N (

−→
T (m,n),n) 6 ∆N (n ′,n)

∀ m,m ′ ∈ M ,n ∈ N :T (m ′,n)⇒
∆M (

←−
T (m,n),m) 6 ∆M (m ′,m)

Assuming that the distance is only null when the model
is unchanged (i.e., ∆ (n,n ′) = 0 ≡ n = n ′), it is triv-
ial to show that these laws reduce to hippocraticness
when the models m and n are already consistent. Note,
that this principle by itself does not ensure determin-
ism, although it substantially reduces the set of possible
results. If among the returned models the user wishes
to favor a particular subset, keys or OCL constraints
can be added to the meta-model to further guide the
transformation engine.

We propose two different techniques to measure the
update distance between models. In the first one, mod-
els are interpreted as graphs and the graph edit distance
(GED) [51] is measured. GED measures the distance
between two graphs as the number of node and edge
insertions and deletions needed to obtain one from the
other. Concretely, graph nodes denote model elements
and literal values (i.e., primitive type values or enumer-
ation literals), while edges denote links between model
elements or attributes between model elements and lit-
eral values. GED counts changes in this graph represen-
tation, with the exception of literal values, which are
considered external to particular model instances and
thus do not affect model distance. This is a meta-model
independent metric that is automatically inferred by
our tool for any meta-model provided by the user.

The simple definition for distance provided by GED
assumes a fixed repertoire of edit operations which may
not be desirable. In particular, there is no control over
the “cost” of complex operations. For example, chang-
ing the name of a Class will have a cost of 2, since it
requires deleting the current name edge and inserting
a new one, while adding a new Attribute to a Class
will cost 3, since it requires creating a new Attribute,

setting its name, and adding it to the Class. One may
wish both these operations to be atomic edits and have
the same unitary cost. Also, one may wish to allow only
particular edits in order to control non-determinism of
enforcement runs.

To address such limitations, we propose as an al-
ternative measure an operation-based distance (OBD),
that allows the user to control the range of valid repairs
by specifying in the meta-model which edit operations
can be applied to update the model. These are speci-
fied using pre- and post-conditions defined in (a subset
of) OCL. For the purposes of our running example, we
assume the existence of the edit operations whose in-
terfaces are defined in Fig. 1. The following is an OCL
specification of the operation setName from Class:
context Class::setName(n : String)

post name
self.name = n;

post frame_class_name
Class.allInstances()->forAll(c |

c.name@pre = c.name or c = self)
modifies Class::name

In this case, ∆ will be the length of the edit opera-
tion sequence (built over the user-defined operations)
required to achieve the new model. Enforcing the princi-
ple of least change entails minimizing this sequence be-
tween the original and the updated models. While OBD
allows the assignment of lower costs to complex updates
(simply create an operation that composes smaller op-
erations), assigning higher costs to simple operations is
not as straight-forward as they may not be decompos-
able. This would require customizable operation costs
which is left as future work.

A source of ambiguity in OCL concerns frame condi-
tions. Assuming that everything that is not mentioned
in the post-condition is not changed is generally a rea-
sonable assumption, but this is not trivial to infer from
declarative specifications. Given the lack of OCL state-
ments focusing on frame conditions, we introduce “mod-
ifies” clauses, through which the user must explicitly
specify which elements of the model may be modified
by the operation—the remainder are assumed to remain
unchanged. This mechanism is similar to those intro-
duced by behavioral interface specification languages,
like the Java Modeling Language (JML) [29]. In the pre-
vious example, the modifies keyword states that only
the attribute name in Class is modified by operation
setName.

While our semantics, following the constraint main-
tainers framework and the QVT-R standard, was de-
veloped in a bidirectional transformation scenario (in
the sense that consistency is restored by updating a
single model), it is worth noting that it could triv-
ially be adapted to the general synchronization scenario

Least-change Bidirectional Model Transformation with QVT-R and ATL 9

where both models can be updated simultaneously: re-
sorting to the same consistency relation, enforcement
runs would try to minimize the distance of both mod-
els to the original ones, rather than just one. Given a
synchronization procedure

←→
T :M × N → M × N and

a distance metric over pairs of models ∆M×N : (M ×
N)× (M ×N)→ N, typically

∆M×N (m,n) (m ′,n ′) = ∆M (m,m ′) +∆N (n,n ′),

the least-change principle would be formalized as:

∀ m,m ′ ∈ M ,n,n ′ ∈ N :T (m ′,n ′)⇒
∆M×N (

←→
T (m,n), (m,n)) 6 ∆M×N ((m ′,n ′), (m,n))

This is related to the multi-directional scenario, where
the user may wish to update multiple models in order to
restore consistency, to which our technique can also be
generalized [32]. Here, the system tries to minimize the
distance between the set of original and target models
that the user chose as targets of the enforcement run.

3 Embedding QVT-R in Alloy

In this section we present how the semantics proposed
in the previous section can be operationalized by an
embedding in Alloy. To keep the paper self-contained, a
brief introduction to Alloy is presented, focusing on the
concepts deemed essential to understand our embed-
ding; for a deeper exposition the reader is redirected
to [23]. The reader not interested in the technical de-
tails of the embedding can skip over to Section 4.

3.1 A Brief Introduction to Alloy

Alloy is a lightweight formal specification language that,
supported by the Alloy Analyzer, provides bounded model
checking and model finding functionalities through an
embedding in off-the-self SAT solvers. Alloy is a rich
and flexible language; in this section we focus only on
concepts deemed essential for the scope of this article.

An Alloy specification is developed in modules, that
consist of paragraphs: signature declarations, constraints
and commands. A signature declaration introduces a
set of elements sharing a similar structure and prop-
erties. In Alloy such elements are uninterpreted, im-
mutable and indivisible, and are thus denoted atoms.
A signature declaration may also introduce fields, i.e.
relations that connect its atoms to those of other (or
the same) signatures. These are represented as sets of
tuples of atoms in instances. Alloy is not restricted to
binary relations, and it is not uncommon to have fields
that relate three or more signatures. A signature that

extends other signatures inherits their fields. It can
also be contained in another signature, in which case
it is simply a subset of the parent signature.

Signatures may be annotated with multiplicity key-
words to restrict their cardinality, namely some (at least
some elements), lone (at most one element), and one
(exactly one element). The range signature in a field
declaration can also be annotated with such multiplic-
ities, to restrict the number of atoms that can be con-
nected to each atom of the source signature. If that
number is arbitrary, the special multiplicity keyword
set should be used.

Facts specify properties that must hold in every in-
stance. These may call functions and predicates, that
are essentially containers for reusable expressions. Com-
mands are used to perform particular analyses, by in-
voking the underlying solver. Run commands try to find
instances for which the specified properties hold, while
check commands try to find counter-examples that re-
fute them. Commands can be parametrized by scopes
for the declared signatures, thus bounding the search-
space for the solver. If no scope is specified a default of
3 is assumed.

Figure 5 depicts a possible (incomplete) specifica-
tion of the UML class diagram meta-model using Alloy.
Signatures Package, Class and Attribute declare the
corresponding classes and introduce (binary) fields to
represent the classes’ attributes and associations. Al-
loy does not have a primitive boolean type, so boolean
attributes are usually represented by subset signatures
containing the elements that have the attribute set to
true. This is the case of the persistent attribute of
Class, here represented by the Persistent subset sig-
nature. The run command instructs the analyzer to
search for instances conforming to the acyclic predi-
cate, setting a specific scope for each of the signatures.

Formulas in Alloy are defined in relational logic, an
extension of first-order logic with relational and closure
operators. Everything in Alloy is a relation, i.e. a set
of tuples of atoms (with uniform arity). Signatures are
unary relations (sets) containing the respective atoms
and scalar values (including quantified variables) are
just singleton sets. This uniformity of concepts leads to
a very simple semantics. The relational logic operators
also favor a navigational style of specification that is
appealing to software engineers, as it resembles object-
oriented languages.

The key operator in Alloy is the dot join composition
that allows the navigation through fields (and relational
expressions in general). For example, if c is a Class,
c.name denotes its name (a scalar) and c.general
accesses its super-class (a set containing at most one
Class). Besides composition, relational expressions can

10 Nuno Macedo, Alcino Cunha

module UML

sig Package {
name : one String

}
sig Attribute {
name : one String

}
sig Class {
attribute : set Attribute,
general : lone Class,
namespace : one Package,
name : one String

}
sig Persistent in Class {}

pred acyclic {
all self:Class | self not in self.^general

}

run { acyclic }
for 3 Class, 3 Attribute, 1 Package, 3 String

Fig. 5: A (static) specification of UML in Alloy.

also be built using the union (+), intersection (&), dif-
ference (-), and cartesian product (->) operators. In
particular, singleton tuples can be defined by taking
the cartesian product of two (or more) scalars. Rela-
tions can also have their domain restricted to a given
set (<:) and likewise for the range (:>). For example,
Persistent <: name is the binary relation that as-
sociates persistent classes with the respective names.
Binary relational expressions can also be reversed (∼),
extended with the transitive closure (^), or with the re-
flexive transitive closure (*). For example, in the acyclic
predicate, expression self.^general retrieves all the
super-classes of self. Relational expressions may also
be created by set comprehension. Finally, there are some
primitive relations pre-defined in Alloy: univ denotes
the universe, i.e. the set of all tuples, none denotes the
empty set, and iden the binary identity relation over
the universe.

Alloy has limited support for integers: the pre-defined
Int signature contains all available integers. In com-
mands, the scope of Int determines the available num-
ber of bits to represent them (in two’s complement no-
tation). Integers can be added and subtracted with the
functions plus and minus, respectively. The default se-
mantics for integer operations is wrap around: for ex-
ample, if the scope for Int is 3, plus[3,1] is -4. Every
relation expression can have its cardinality determined
with the # operator.

Atomic formulas are built from relational expres-
sions using inclusion (in), equality (=), or cardinal-
ity checks (besides lone, some, and one, keyword no

can also be used to check if a relational expression is
empty). Formulas can be combined with conjunction
(&&), disjunction (||), implication (=>), possibly asso-
ciated with an else formula, equivalence (<=>), and
negation (not). Besides the universal (all) and ex-
istential (some) quantifiers, Alloy also supports lone
(property holds for at most one atom), one (property
holds for exactly one atom), and no (property holds
for no atom) quantifiers. In the acyclic predicate, as
expected, the formula quantifies over all atoms of signa-
ture Class and tests if the inheritance chain is acyclic.

3.2 Meta-models Annotated with OCL

The models upon which our transformations are defined
consist of UML class diagrams annotated with OCL
constraints. Some translations have been proposed to
embed such models in Alloy, namely [1,9]. Our embed-
ding will be based on the translation proposed in [9],
since, unlike other proposals, it covers an expressive
OCL subset that includes closure and operation speci-
fication via pre- and post-conditions. Here, we will just
briefly present this translation.

Classes, their attributes, and related associations
can be directly translated to signatures and fields in
Alloy. Likewise for the inheritance relationship, that Al-
loy also supports. The main difference between the em-
bedding from the previous section is that, since Alloy
instances are built from immutable atoms, the transfor-
mation resorts to the well-known local state idiom [23]
to capture updates to a given model. This means that
a special signature will be introduced to represent each
meta-model, whose atoms will denote different models
(or evolutions of a given model). To each field (repre-
senting an association or an attribute) an extra column
of this type is added, to allow its value to change in
different models. The translation proposed in [9] is also
extended to allow classes to have different elements in
different models: for each class a special binary field
(with the same name) will capture the objects of that
class that exist in each model, to which we will refer
as the signature’s state field. Boolean attributes are en-
coded similarly: a binary field captures which objects
have the attribute set to true in each model. For ex-
ample, class Class of our UML meta-model is translated
to the following signature declaration.
sig UML {}
sig Class {
class : set UML,
attribute : Attribute -> UML,
general : Class -> UML,
namespace : Package -> UML,
name : String -> UML,
persistent : set UML

Least-change Bidirectional Model Transformation with QVT-R and ATL 11

}

The binary state field class captures the Class ob-
jects that exist in each UML model. The remaining fields
model the respective Class associations and attributes.
With the relational composition operator we can ac-
cess the values of these fields for a given UML model
m. For example, class.m is the set of Class objects
that exist in model m, general.m is a binary relation
that maps each Class to its general in model m, and
persistent.m is the set of Class objects that have
the attribute persistent set to true in model m.

Constraints must also be generated to ensure the
correct multiplicities, and that fields only relate atoms
existing in the same model (inclusion dependencies).
For example, fact

all m:UML | namespace.m in class.m -> one package.m

is generated to capture the cardinality constraints of
relation namespace, and to force it, for each UML model
m, to be a subset of the cartesian product between
class.m and package.m (respectively, the sets of Class
and Package elements of model m). Constraints that
guarantee the integrity of the class hierarchy are also
inserted, for instance, in the HSM meta-model, fact

all m:HSM | compositestate.m in state.m

would ensure that if a CompositeState exists in model
m, it is also registered as a State in that model. OCL in-
variants in a given context are also automatically trans-
lated to Alloy facts, resulting in universal quantifica-
tions over the respective signature state fields, following
the technique previously developed in [9]. Table 1 sum-
marizes the currently supported operations from the
OCL standard library [42] (operation oclIsNew may
only be used in controlled contexts as explained in Sec-
tion 3.4).For example, the OCL invariant stating that
association general is acyclic is translated to Alloy as

all m:UML, self:class.m |
self not in self.^(general.m)

Here, ^(general.m) is the transitive closure of field
general projected over m.

The QVT standard extends the OCL language with
the insertion of the opposite keyword that allows the
navigation of associations in the opposite direction, which
can be directly translated to Alloy using the converse
operator ∼.

3.3 QVT-R Transformations

Top relations RI and RJ are specified by predicates
parameterized by the model instances. The definition
of all these predicates follows closely the formalization

family operations
base =, <>, oclIsNew, oclIsKindOf,

oclType, oclAsType, allInstances
integer +, -, >, <, <=, >=
boolean and, or, not, implies, true, false

set size, includes, includesAll, excludes,
excludesAll, isEmpty, notEmpty, union, -,
intersection, including, excluding, asSet

iterators exists, forAll, one, any,
collect, select, reject, closure

QVT opposite

Table 1: Supported OCL operations.

in Section 2.3. In particular, auxiliary predicates are
used to specify the when and where clauses, and the
domain patterns of each relation. For example, back
to uml2rdbms, Fig. 6 presents the result of embedding
C2TI in Alloy as the predicate Top_C2T_RDBMS, as well
as the necessary auxiliary predicates. Note how, in the
specification of C2TI, quantifications are restricted to
range over atoms existing in the respective models.

For each relation R we also declare two Alloy predi-
cates to specify RB and RC. For example, in Fig. 6 the
omitted predicates P2S_RDBMS and A2C_RDBMS spec-
ify P2SB and A2CB, respectively. Besides the respective
domain elements, these are also parameterized by the
models they are being applied to. Since in Alloy predi-
cates cannot call each other recursively, predicates RB

and RC are defined in terms of auxiliary relations over
the model state signatures, specified by comprehension.
For instance, the following recursive predicates, that
would arise from a direct encoding of S2SB and SS2SB
in hsm2nhsm, are invalid in Alloy.

pred S2S_NHSM [hsm:HSM,nhm:NHSM,s:State,t:State] {
no s.container => TS2S_NHSM[hsm,nhm,s,t]

else SS2S_NHSM[hsm,nhm,s,t]
}

pred SS2S_NHSM [hsm:HSM,nhm:NHSM,s:State,t:State] {
S2S_NHSM[hsm,nhm,s.container,t]

}

Instead, we declare auxiliary relations S2S_NHSM’
and SS2S_NHSM’ with types HSM->NHSM->State->State
and HSM->NHSM->State->State, respectively, and ax-
iomatize their value using set comprehension as follows:

fact {
S2S_NHSM’ = { hsm:HSM,nhm:NHSM,s:State,t:State |

no s.container => hsm->nhm->s->t in TS2S_NHSM’
else hsm->nhm->s->t in SS2S_NHSM’ }

SS2S_NHSM’ = { hsm:HSM,nhm:NHSM,s:State,t:State |
hsm->nhm->s.container->t in S2S_NHSM’ }

}

Note how predicate invocation is replaced by mem-
bership check: for example, instead of the predicate

12 Nuno Macedo, Alcino Cunha

pred When_C2T_RDBMS [uml:UML,rdb:RDBMS,p:Package,s:Schema] {
P2S_RDBMS[uml,rdb,p,s]

}

pred Where_A2C_RDBMS [uml:UML,rdb:RDBMS,c:Class,t:Table] {
A2C_RDBMS[uml,rdb,c,t]

}

pred Pattern_C2T_UML [uml:UML,c:Class,n:String,p:Package] {
n in c.name.uml && c in persistent.uml && p in c.namespace.uml

}

pred Pattern_C2T_RDBMS [rdb:RDBMS,t:Table,n:String,s:Schema] {
s in t.schema.rdb && n in t.name.rdb

}

pred Top_C2T_RDBMS [uml:UML,rdb:RDBMS] {
all c:class.uml, n:String, p:package.uml, s:schema.rdb |

When_C2T_RDBMS[uml,rdb,p,s] && Pattern_C2T_UML[uml,c,n,p] =>
some t:table.rdb | Pattern_C2T_RDBMS[rdb,t,n,s] && Where_A2C_RDBMS[uml,rdb,c,t]

}

Fig. 6: Alloy specification of C2TI.

call TS2S_NHSM[hsm,nhm,s,t] we check that the tuple
hsm->nhs->s->t is included in relation TS2S_NHSM’.
By resorting to these, the predicate encodings S2SB
and SS2SB can now be redefined simply as

pred S2S_NHSM [hsm:HSM,nhm:NHSM,s:State,t:State] {
hsm->nhm->s->t in S2S_NHSM’

}

pred SS2S_NHSM [hsm:HSM,nhm:NHSM,s:State,t:State] {
hsm->nhm->s->t in SS2S_NHSM’

}

As discussed in Section 2.3, this embedding will not be
well-behaved in presence of cyclic recursion.

The checking semantics of the transformation is rep-
resented by a predicate that checks all top relations in
both directions. In the uml2rdmbs example we have:

pred uml2rdbms [uml:UML,rdb:RDBMS]{
Top_P2S_RDBMS[uml,rdb] && Top_P2S_UML[uml,rdb] &&
Top_C2T_RDBMS[uml,rdb] && Top_C2T_UML[uml,rdb]

}

Regarding enforcement semantics, to implement the
principle of least change as described in Section 2.4,
we require the measurement of the update distance be-
tween two models. The first proposed metric is GED,
that interprets models as graphs and measures the dis-
tance as the number of node and edge insertions and
deletions needed to obtain one graph from the other.
Note that an Alloy instance is isomorphic to a labelled
graph whose nodes are the atoms, and edges tuples in
fields (technically to hypergraphs, since fields are n-
ary). With this mechanism, ∆UML can be computed as
follows:

fun Delta_UML [m,m’:UML] : Int {
#((class.m-class.m’)+(class.m’-class.m)).plus[
#((name.m-name.m’)+(name.m’-name.m)).plus[
. . . // symmetric difference of remainder fields
]]

}

Assuming m’ represents an updated version of m,
this function sums up, for every signature and field, the
size of their symmetric difference in both models. To
avoid Alloy’s standard wrap around semantics for inte-
gers, model finding is executed with the option Forbid
Overflow set [36].

Regarding OBD, the edit operations, specified by
the user in OCL using pre- and post-conditions, are
automatically converted to Alloy using the translation
procedure defined in [9]. Essentially, each operation will
originate an Alloy predicate that specifies when it can
hold between two models. The resulting Alloy predicate
takes as arguments the pre- and post-states of the af-
fected model (with the post-state being denoted by a
primed variable), the receiver element of the edit op-
eration (denoted by argument self of the appropriate
context class), as well as the stated operation parame-
ters. For example, the result of translating setName to
Alloy is the following:

pred setName[self:Class,n:String,m,m’:UML] {
self.(name.m’) = n;
all c:class.m’ |
c.(name.m) = c.(name.m’) or c = self

// frame conditions inferred from modifies
class.m’ = class.m
attribute.m’ = attribute.m
general.m’ = general.m
namespace.m’ = namespace.m

Least-change Bidirectional Model Transformation with QVT-R and ATL 13

. . . // remaining frame conditions
}

The body of the predicate consists of the translation
of the pre- and post-conditions from the OCL specifi-
cation. Pre-conditions (if any) are evaluated over the
pre-state of the UML model m, while post-conditions re-
fer to the respective post-model m’, except in the case
of operations and properties marked by the tag @pre
which are still evaluated in the pre-state. Frame condi-
tions for all classes and associations not included in the
modifies clause are also automatically inferred.

Given the specifications of operations, we constrain
models to form a sequence, where each step corresponds
to the application of an edit operation:

open util/ordering[UML]
fact {
all m:UML, m’:m.next | {
some c:class.m,n:String | setName[c,n,m,m’] or
some c:class.m,n:String | addAttribute[c,n,m,m’] or
. . . // remaining operation predicates
}
}

The Alloy module ordering imposes a total order on all
atoms of the given signature (in this case, UML), and de-
clares a binary relation next that captures such order.
The presented fact restricts the possible values of next,
by requiring each state m and subsequent state m.next
to be related by one of the specified operations.

In this case, ∆UML will be the number of models (in-
termediate steps) required to achieve a consistent tar-
get, which, as we will see next, will be determined by
the scope of the signature denoting the respective meta-
model, UML in this case.

3.4 Executing the Semantics

Executing the transformation in checkonly mode is fairly
simple: we just need to check the consistency predi-
cate for a pair of concrete models. To represent a con-
crete model, since Alloy has no specific constructs to
denote model instances, we use singleton signatures to
denote specific objects and facts to fix the interpreta-
tion of fields. For example, a UML model M with Class
A and Class B, with no Attribute elements, in a sin-
gle Package P, where A is persistent and extends the
non-persistent B, can be specified as follows:

one sig M extends UML {}
one sig P extends Package {}
one sig A,B extends Class {}
fact {

class.M = A + B &&
package.M = P &&
namespace.M = A->P + B->P &&
general.M = A->B &&

persistent.M = A &&
no attribute.M

}

To check if UML model M is consistent with a RDBMS
model N the command check { uml2rdbms[M,N] } is
issued, with the scope of each signature being set to
the number of elements of the respective class in each
of the two models. Regarding enforce mode with GED
minimization, in order to determine a new UML model
M’ consistent with RDBMS model N, with original model
M, the command

run { uml2rdbms[M’,N] && Delta_UML[M,M’]=∆ }

is issued with increasing ∆ values (starting at 0). In
this case, the scope of each signature is set to the num-
ber of elements of the respective class plus ∆, to allow
complete freedom in the choice of edit operations. The
calculation and increment of both ∆ and the scope is
performed automatically by our tool. Since we are deal-
ing with exact scopes, the class hierarchy must also be
taken into consideration. For instance, for a HSM so-
lution with one CompositeState and one State, the
scope of State must be set to 2.

Regarding enforce mode with OBD minimization,
the command

run { uml2rdbms[M’,N] && M = first && M’ = last }

is issued with increasing scopes ∆ (plus one) for sig-
nature UML, as all UML atoms will belong to the total
order entailed by the operations. Singleton fields first
and last denote the first and last atoms of the next
total order: they are constrained to be the original and
updated model, respectively, meaning that the latter
should be obtained from the former using ∆ edit op-
erations. The scope of the remaining signatures is in-
ferred from the operations specified in the meta-model,
allowing a finer control over the scopes of the model
finder, since we know the behavior of all possible up-
date steps. This requires the creation of elements by
the operations to be detected, which is by itself an am-
biguous issue in OCL-specified operations. For our tech-
nique, we assume that every new element created by an
operation is identified with the oclIsNew() operation
in the post-condition and inside a one quantification
(a predicate which holds for exactly one element [42,
p. 170]). With oclIsNew() tags inside other quanti-
fiers we would not be able to precisely measure the
scope increment. For instance, consider the operation
addAttribute(n:String) from the Class class. Its
post-condition would contain, among others, the fol-
lowing constraint:

self.attributes->one(a |
a.oclIsNew() and a.name = n)

14 Nuno Macedo, Alcino Cunha

This in turn would be translated to Alloy as:

a not in self.(attributes.m) &&
self.(attributes.m’) = self.(attributes.m) + a &&
a.(name.m’) = n

The user is required to specify an upper-bound for
∆ that limits the search for consistent targets. If several
consistent models are found at the minimum distance
our tool warns the user and allows him to see the dif-
ferent alternatives. If the user then desires to reduce
such non-determinism, he can, for example, add extra
OCL constraints to the meta-model or narrow the set
of allowed edit operations to target a specific class of
solutions. Section 6 will present a concrete example of
how such narrowing can be done.

4 Bidirectionalizing ATL

ATL [24] is a widely used model transformation lan-
guage created to answer the original QVT RFP, and
thus shares some characteristics with the standardized
QVT languages. Unlike QVT-R, ATL has de facto stan-
dard operational semantics implemented as a plugin for
the Eclipse IDE1. However, it is unidirectional, in the
sense that a transformation between M and N meta-
models (which will be denoted by

−→
t :M → N , as it is

a deterministic procedure), only specifies how to cre-
ate an N model from an M model. The prescribed
method to obtain bidirectional transformations with
ATL is to write two unidirectional transformations. Un-
fortunately, this leads to obvious correctness and main-
tenance problems, since the language provides no means
to check that they are inverses of each other, nor to au-
tomatically derive one from the other. Moreover, that
only works well for essentially bijective transformations,
since, unlike in QVT-R, in ATL transformations are not
able to recover missing information from the previous
target model, as they only receive the source model as
input (as specified in the type of

−→
t) In this section

we explore how our technique can be adapted to confer
bidirectional semantics to ATL transformations.

4.1 ATL language

ATL is a hybrid language with both declarative and im-
perative constructs. The authors advocate that trans-
formations should be declarative whenever possible, and
imperative specifications should only be used if speci-
fying the transformation declaratively proves to be dif-
ficult [24]. In this work we restrict ourselves to declar-
ative constructs, disregarding imperative ones (known

1 http://www.eclipse.org/atl/

in ATL as called rules and do blocks). Giving seman-
tics to imperative constructs in Alloy’s relational logic is
doable (see, for example, [38]), but the need to explic-
itly represent all intermediate updates to the models in
execution traces would deem our solver based approach
completely unfeasible, in particular in presence of loops.

The main constituents of ATL transformations are
rules, the ATL equivalent to QVT-R relations, whose
abstract syntax is:

[[unique] lazy] rule R {
from a : A (πM)
to b : B (φ)

}

Rules consist of a single source element a from the
source meta-model and a set of target elements (for
the scope of this presentation we restrict ourselves to
a single target element b) from the target meta-model.
Source elements are selected by an OCL pattern πM
over their properties, while target patterns consist of
bindings φ over the target element, which may consider
values from source elements. Roughly, the execution se-
mantics creates a target element for every source ele-
ment that matches πM . Source models are read-only
and target models write-only, and thus transformations
are not able to take into consideration existing elements
in the target model, not even being able to “check-
before-enforce” (although more recent work on incre-
mental executions ATL executions could eventually be
used to address this issue [26]).

Default rules are called matched rules and must be
executed for all elements of the source model (similarly
to QVT-R top relations). Lazy rules, unlike matched
rules, are only executed if explicitly called from other
rules (similarly to QVT-R non-top relations). They can
either be unique or not: in unique lazy rules a source
element is always matched to the same target element,
no matter how many times the rule is called over that
source element; in non-unique lazy rules a new target el-
ement is created every time it is called.[Nao suportamos
non-unique lazy rules, certo? Nao devia ficar claro?]

One particular characteristic of ATL is that target
bindings may rely on implicit traceability links between
elements created by other matched rules. Target ele-
ments may be directly “assigned” source elements, in
which case traces are used to retrieve the correspond-
ing target element. This is possible because execution is
divided in two phases: the first phase binds source ele-
ments to the source patterns and creates the target ele-
ments, implicitly creating traces between them; the sec-
ond phase applies the bindings to the target elements,
resorting to the traces if necessary. Since a source ele-
ment cannot be matched by more than one rule [2], it is
always possible to retrieve a single target element from

http://www.eclipse.org/atl/

Least-change Bidirectional Model Transformation with QVT-R and ATL 15

module hsm2nhsm;
create nhm : NHSM from hsm : HSM;

// StateMachineToStateMachine
rule M2M {

from
hm : HSM!StateMachine ()

to
nm : NHSM!StateMachine (name <- hm.name)

}

// StateToState
rule S2S {

from
hs : HSM!State (hs.container->isEmpty())

to
ns : NHSM!State (

name <- hs.name,
machine <- hs.machine

)
}

// TransitionToTransition
rule T2T {

from
ht : HSM!Transition

to
nt : NHSM!Transition(

source <- ht.source->closure(container)->
any(s | s.container->isEmpty()),

target <- ht.target->closure(container)->
any(s | s.container->isEmpty()),

machine <- ht.machine
)

}

Fig. 7: The hsm2nhsm ATL transformation.

a source element. Lazy rules must be explicitly called
and thus are not be taken into consideration in implicit
resolutions.

Figure 7 presents an ATL version of the hsm2nhsm
transformation using transitive closure. Rule S2S re-
lates every top-level state in HSM to a state in NHSM with
the same name, while rule T2T maps every transition
in HSM to a transition on NHSM between the top-level
containers of its source and target states. These are re-
trieved by filtering the result of the closure operation
by a select operation.Note how in T2T, states of HSM
the input model are being attributed to the source and
target of transitions in the NHSM output model: the rule
is taking advantage of the implicit traces created by
S2S between HSM and NHSM states. A similar situation
occurs in S2S when assigning state machines previously
bound by M2M.

4.2 Overview of the Bidirectionalization Technique

To bidirectionalize ATL transformations we will first
derive a consistency relation T ⊆ M ×N from an ATL
transformation

−→
t : M → N , and then use it to de-

termine suitable (inverse) transformations according to
the least-change semantics proposed in Section 2.4 for
QVT-R enforce mode.

Since we are given the forward transformation
−→
t :

M → N , one could imagine that it would sufice to de-
rive a suitable backward transformation

←−
t :M ×N →

N , thus lifting ATL transformations to the framework
of lenses [12], as attempted before by Sasano et al [45].
A well-behaved lens consists precisely of a pair of trans-
formations

−→
t : M → N (usually known as get) and

←−
t : M × N → M (usually known as put), that is ac-
ceptable,

−→
t (
←−
t (m,n)) = n, guaranteeing that an

update on n is indeed propagated to m, and stable,←−
t (m,

−→
t (m)) = m, the lens equivalent to hippocratic-

ness. The lens framework is designed to deal with trans-
formations that are abstractions (i.e., surjective trans-
formations), as implied by the asymmetric nature of the
two transformations: the view n can always be derived
solely from a source m as it contains less information.
In particular, if a model n is updated to n′ that falls
outside the range of

−→
t , the behavior of

←−
T is unde-

fined. Such well behaved lens could be obtained in our
least-change maintainer framework, by setting the for-
ward transformation as an implicit consistency relation
as T (m,n) ≡ n =

−→
t (m).

Unfortunately, this imposes some undesirable limi-
tations in the allowed usage scenarios. Consider a very
simple example where a source model World consists
of a set of Person elements with a name, and a tar-
get model Company consists of a set of Employee ele-
ments with a name and (optional) salary (Fig. 8), and
a trivial ATL transformation employ that maps every
Person to an Employee with the same name and an
empty salary (Fig. 9). This transformation is clearly
not surjective since it only targets the subset of Company
models where Employee elements have no salary. Now,
consider a model wrd : World with a single person p

and the corresponding model cpn : Company created by−−−−−→
employ. If the user updates cpn to cpn′ by assigning
a salary to p, there will be no valid wrd′ such that
cpn ′ =

−−−−−→
employ wrd ′, and thus cpn′ would be an in-

valid update. This limitation would greatly reduce the
updatability of the framework.

A possible solution to this problem would be to
weaken the lens laws, as suggested in [45], by allow-
ing
←−
t (m,n) to produce a source m′ whose view n ′ =

−→
t (m ′) is not n (breaking acceptability) as long as
propagating n′ backward produces m′ again, i.e.,

16 Nuno Macedo, Alcino Cunha

name : String
Person

name : String
salary : Int [0..1]

Employee

Fig. 8: Class diagrams of the World and Company meta-
models.

module employ;
create cpn : Company from wrd : World;

// PersonToEmployee
rule P2E {

from
p : World!Person ()

to
e : Company!Employee (name <- p.name)

}

Fig. 9: The employ ATL transformation.

←−
t (m,n) = m ′ ⇒←−t (m,

−→
t (m ′)) = m ′

(deemed weakly acceptable). However, even if the above
update is now allowed, if the user updates the World
model (for example, inserting a new person) and wishes
to propagate such change to the Company, the forward
transformation

−−−−−→
employ would erase the previously as-

signed salary of p, since it is not incremental. Embed-
ding ATL in a lens framework with such weakened laws
presumes that once

−→
t is run to generate a new target

model from a source, subsequent updates can only be
safely propagated backwards.

To overcome this limitation we opt instead to em-
bed ATL transformations in the framework of main-
tainers, likewise to QVT-R. The main idea is to infer
from

−→
t : M → N a consistency relation T ⊆ M × N

such that every model m is considered consistent with
any model that extends

−→
t (m), in the sense that it sets

values for properties not bound by
−→
t . This of course

implies that
−→
t ⊆ T . From T a new forward transfor-

mation
−→
T :M ×N → N and a backward transformation←−

T :M ×N → M can then be derived to propagate up-
dates in both directions, using the least-change seman-
tics described in Section 2.4 (obviously satisfying both
the correctness and hippocraticness laws). Back to the
example from Fig. 9, since

−−−−−→
employ does not bind the

salarys in Company models, the World with a single
Person p would be consistent with any Company with
a single Employee p, whatever his salary. The follow-
ing section will present a technique to infer one such
possible T from

−→
t .

The bidirectional ATL framework obtained with this
technique satisfies the following properties. First, since

−→
t ⊆ T , the consistency relation trivially holds for pairs
of models (m,n) such that

−→
t (m) = n. Second, if

−→
t

is surjective, applying either
−→
t or

−→
T to an updated

source will yield the same updated target: in this case,−→
t completely defines the target elements, thus a model
m is only related to

−→
t (m) by T . In this case, the pair

of transformations
−→
t and

←−
T will form a well-behaved

lens. In contrast, for non-surjective ATL transforma-
tions this is no longer the case. It is easy to see why
by considering the toy example from Fig. 9: by updat-
ing cpn to cpn′ with the insertion of a salary, wrd and
cpn′ will still be consistent by Employ, and thus neither−−−−−→
Employ nor

←−−−−−
Employ will update the models; applying−−−−−→

employ however would revert cpn′ back to cpn. In this
case

−−−−−→
employ and

←−−−−−
Employ do not form a well-behaved

lens, satisfying only weak acceptability.
The derivation of a maintainerT does not invalidate

the use of
−→
t paired with

←−
T : the pair comprises a stable

and weakly acceptable lens. Due to non-incrementality
of
−→
t however,

−→
t is better suited to initially create the

target model from a source, at which point
−→
T and

←−
T

can be used to propagate updates in both directions to
maintain consistency.

4.3 Inferring a Consistency Relation

At first glance, the semantics of an ATL transformation
shares some similarities with the checking semantics of
QVT-R described in Section 2.3: pattern matching is
used to filter candidate source elements, and it resem-
bles the forall-there-exists quantification pattern to re-
late source and target elements. There are also some
apparent differences: it is a directional semantics, in
the sense that the above forall-there-exists quantifica-
tion in principle should only be checked in the direc-
tion of the target (the direction of the transformation),
and the existential quantifier should be unique, that is,
for all candidate source elements, there must exist ex-
actly one target element built with the target bindings.
However there are some subtle differences: as the follow-
ing example will show, the forall-there-exists semantics
cannot be realized using quantifiers, and explicit trace-
ability links must be used instead; check must be also
performed in the opposite direction to avoid spurious
target elements.

Consider again the simple transformation from Fig. 9,
and the following semantics for the rule P2E with quan-
tifiers, using a notation similar to the one introduced
in Section 2.3 for QVT-R:

P2EI (wrd : World, cpn : Company) ≡ ∀ p : Person |
(∃ ! e : Employee | p.name = e.name)

Least-change Bidirectional Model Transformation with QVT-R and ATL 17

Given a source model wrd with two Person elements
with the same name a, this semantics would force a
consistent target model cpn with exactly one Employee
with name a. This is obviously not the intended ATL se-
mantics, as two Employee elements with the same name
are created by the transformation, one for each source
Person. Obviously, relaxing the uniqueness constraint
of the existential quantifier will not solve the problem,
as an arbitrary number of Employee elements would
be allowed. The one-to-one mapping between candidate
source and generated target elements cannot be realized
by quantifiers, but through an explicit traceability re-
lation between them. Moreover, this directional check
does not guarantee that the only Employee elements in
the target model are the ones created by the transfor-
mation, and some check in the opposite direction must
be performed to ensure that every Employee originates
from a Person. Such semantics can be encoded through
a higher-order quantification as follows:

P2EI (wrd : World, cpn : Company) ≡
∃ P2ECB ⊆ Person× Employee |
∀ p : Person | ∃ ! e : Employee |
P2ECB (p, e) ∧ p.name = e.name ∧
∀ e : Employee | ∃ ! p : Person |
P2ECB (p, e) ∧ p.name = e.name

That is, the transformation ensures that there exists
a traceability relation P2ECB between every Person
(since πWorld is empty) to a unique Employee with the
same name, and vice-versa. Note that this semantics
considers target elements that fall outside the range of−−−−−→
employ, namely those that have the salary defined.

In general, the semantics of matched rule R can be
specified as follows:

RI (m :M ,n :N) ≡ ∃ RCB ⊆ A× B |
∀ a :A | πM ⇒ (∃ ! b : B | RCB (a, b) ∧ φ) ∧
∀ b : B | (∃ ! a :A | RCB (a, b) ∧ πM ∧ φ)

This defines RCB as a one-to-one relation between ev-
ery candidate source element and a single corresponding
valid target element. The first expression states that ev-
ery a : A that matches the pattern πM must be related
to a single b : B with the bindings φ; the second expres-
sion states that every b : B must be related to a valid
a : A. The binding φ in a rule assigns to the target
element values possibly from the source element: un-
like in QVT-R target patterns, all variables in φ must
be previously assigned in the source pattern πM . As
such, they are interpreted likewise to where conditions
in QVT-R.

An implicit call that might occur in the right-hand-
side e of a binding is handled as follows. If e has a
primitive type or is a target element then it is directly

translated to Alloy. If e denotes a source element of type
A, we retrieve the matching target element of type B
from the respective traceability relation RCB (notice
that it is always possible to uniquely determine RCB,
since source elements of a given type are restricted to be
matched by a single rule [2]). Traceabilities can also be
implicitly called over collections, as in the T2T transfor-
mation. Our tool also supports these implicit calls for
collections that are sets, the above procedures being
applied for every element e in the set.

Although the semantics of unique lazy rules also
relies on explicit traceability links, there is a subtlety
that prevents their encoding in a similar way to (top)
matched rules, namely, it is quite difficult to infer in
static time what elements a unique lazy rule must relate—
recall that they only create unique target elements when
called from another rule. As such, the semantics of these
rules will be divided in two parts. Given an unique lazy
rule R, the following predicate will only enforce the cor-
rectness of the respective traceability relation, with the
existence and uniqueness checks being deferred to the
rule call:

RI (m :M ,n :N) ≡ ∃ RCB ⊆ A× B |
∀ a :A, b : B | RCB (a, b) ∧ πM ⇒ φ

Moreover, when a unique lazy rule R is called over an
expression e, we insert the following additional con-
straints to ensure that the trace between e and the
matched element b exists and is unique:

∃ ! b : B | RCB (e, b) ∧ ∀ a :A | TU (a, b)⇒ a = e

Where TU denotes the union of all unique lazy traces.
The first part of the conjunction states that e is uniquely
matched to a b by RCB, and the second that b is not
being matched to any other element by any other rule.

Finally, for an ATL transformation T , we assume
that two models are consistent if the above semantics
holds for all (matched and unique lazy) rules RT :

T (m :M ,n :N) ≡ ∀ R :RT | RI (m,n)

This semantics can be encoded in Alloy in a similar
manner to that of QVT-R, as described in Section 3.3.
The higher-order existential quantification that asserts
the existence of the traceability relation RCB can be en-
coded by skolemization, by explicitly declaring an Alloy
relation that represents it. This ends up being similar
to the actual encoding of QVT-R, where an auxiliary
relation was also declared to encode RB, albeit for a dif-
ferent reason, namely to support recursion. Non-unique
lazy rules are currently not supported by our technique.

18 Nuno Macedo, Alcino Cunha

5 Deployment

The technique for bidirectional model transformations
presented in this article has been implemented as part
of the Echo framework2, a tool for managing intra- and
inter-model consistency. In this section we first briefly
present Echo features and architecture, and then de-
scribe with more detail two of its key components: the
model visualizer and transformation optimizer.

5.1 The Echo Framework

The focus of this framework is to help users develop and
keep their models consistent. It supports both intra-
model (i.e. consistency between a model and its meta-
model) and inter-model consistency (relating several
models via bidirectional transformations, the focus of
this article). In both cases, Echo can detect and repair
inconsistencies.

Concerning intra-model consistency, given a meta-
model M with OCL constraints, Echo can automati-
cally check if a model m is consistent with M , that is
m : M . This can be done for newly created models or
every-time the user updates an existing model. If consis-
tency of model m is broken, for example because some
of the OCL constraints is violated, then Echo can au-
tomatically suggest minimally repaired models m′ : M
using the model finding procedure described in this ar-
ticle, that is, it can find consistent models m′ at min-
imum GED or OBD from m. Various alternatives for
repaired models are presented to the user in increasing
distance to the original model, among which the user
is able to choose the preferred one. To help the user
choose the preferred model, they can be depicted as
graphs by resorting to the Alloy visualizer, as seen in
Fig. 10. For better readability, an Alloy theme is auto-
matically inferred from the meta-models (as described
in Section 5.2). A user-defined theme can also be pro-
vided if desired. To help kickstart model development,
Echo can also be used to generate a new minimal model
m : M (notice that often models cannot be empty due
to meta-model constraints), or to generate scenarios for
meta-model validation, that is, models parameterized
by particular scopes and/or additional OCL constraints
targeting specific configurations.

Concerning inter-model consistency, given a QVT-
R or ATL transformation T , from which consistency
relation T ⊆ M ×N is inferred, and models m :M and
n : N , Echo can automatically check if m and n are
T -consistent, that is T (m,n). In the case of QVT-

2 Download and more information available at http://
haslab.github.io/echo and in the tool demo [33].

R it follows the standard-compliant checking seman-
tics presented in Section 2.3. For ATL, the semantics
described in Section 4.3 is used. Given a transforma-
tion T ⊆ M × N and models m : M and n : N such
that ¬T (m,n), Echo can perform a minimal update to
one of the models to recover consistency, for example
produce n′ : N such that T (m,n ′). This repair fol-
lows the enforcement semantics satisfying the principle
of least-change, as described in Section 2.4. Likewise
to intra-model consistency recovery, the user is able
to choose the desired repaired model among all min-
imal consistent models. Finally, given a transformation
T ⊆ M ×N and a model m : M , Echo can produce a
minimal model n : M such that T (m,n) (likewise for
the opposite direction). This is useful at early phases
of model-driven software development, when the user
has developed a first version of the source model, from
which he wishes to derive a first version of the target.
Afterwards, updates can be performed and consistency
recovered incrementally to any of the models, by resort-
ing to the same transformation.

While also available as a command-line application,
Echo’s main distribution platform is as a plugin for the
Eclipse IDE, which automates the features just pre-
sented. Echo’s environment consists of a set models,
conforming to OCL-annotated meta-models, and a set
of inter-model constraints specified by QVT-R and ATL
transformations. Each model is thus restricted by the
intra-model constraint entailed by the meta-model and
any number of inter-model constraints simultaneously.
The Echo plugin was designed to be used in an on-
line setting, in the sense that the consistency tests are
automatically applied as the user is editing the mod-
els and, thus, updates are expected to be incremental,
leaving the original models as unmodified as possible.
Every time the user updates a model, the system auto-
matically checks its consistency in relation to the other
artifacts. If a model is deemed inconsistent, the plugin
displays an inconsistency error and proposes possible
fixes. As there may be more than one consistent model
at minimal distance, Echo presents all possible models
in succession, allowing the user to choose the desired
one, at which time the update is effectively applied to
the model instance. If none of the minimal solutions
is chosen, Echo presents models at increasingly higher
distances from the original.

The plugin is built on top of the Eclipse Modeling
Framework (EMF)3, and resorts to the Model Develop-
ment Tools (MDT) component to process OCL formu-
las and to the Model-to-Model Transformation (MMT)
component to parse QVT-R and ATL specifications.EMF
prescribes Ecore for the specification of meta-models,

3 http://www.eclipse.org/modeling/

http://haslab.github.io/echo
http://haslab.github.io/echo
http://www.eclipse.org/modeling/

Least-change Bidirectional Model Transformation with QVT-R and ATL 19

while model instances are presented as XMI resources.
To enhance the meta-models with additional constraints,
we follow the technique proposed by MDT, of embed-
ding the OCL constraints in meta-model annotations.
Both Ecore meta-models and XMI instances are trans-
lated to Alloy following the techniques from Section 3,
so that the transformation engine described in this ar-
ticle can be applied.

To promote inter-operability, EMF processes mod-
els defined in an abstract syntax, which are persisted as
XMI resources. Thus, as a model-to-model transforma-
tion tool over EMF, Echo is only able to directly process
models represented in XMI, much like the other MMT
components (QVT-R and ATL). Echo’s core engine can
also be used directly as a library, in which case mod-
els are expected to be already parsed into the EMF’s
abstract syntax. Nonetheless, EMF has a wide support
for domain-specific languages presented in a concrete
syntax, which can be directly harnessed by Echo. The
currently prescribed mechanism to convert models from
concrete to abstract syntax is through Xtext4, a lan-
guage processing framework that provides parser gen-
erators as well as full integration with the Eclipse IDE
through custom code editors. As an example, to pro-
cess QVT-R transformations, Echo translates QVT-R
specifications following the standard’s concrete syntax
to EMF’s abstract syntax by relying on the MMT func-
tionalities built over Xtext.

5.2 Visualizing Model Instances

As just described, the user is able to choose the de-
sired repaired model from the range of all minimal con-
sistent solutions. Performing such choice over the con-
crete XMI files would not be user-friendly (even with
the standard Eclipse’s XMI editor), so instead we resort
to the Alloy graph visualizer, where perceiving models
is as easy as grasping graphs. However, in order to be
better understandable by the user these graphs must
be presented in a shape that resembles its model struc-
ture. The Alloy visualizer allows the definition of custom
themes, and our tool automatically determines one such
theme using the information available from the Ecore
meta-models. Alloy’s magic theme functionality [44] also
tries to infer a suitable theme from an Alloy specifi-
cation through a set heuristics. However, while some
of the visualization properties determined by our tech-
nique are similar to those inferred by the magic theme,
the extra information available in the meta-model, and
knowledge about the underlying encoding of the trans-

4 http://www.eclipse.org/xtext/

formations, proves to be an advantage and eliminates
the need of said heuristics.

The most evident feature of the inferred theme is
hiding the extra Alloy fields required by the underly-
ing enforcing mechanism but irrelevant for the user,
in particular the signature’s state fields and the auxil-
iary fields used to represent relation calls. Our enforcing
mechanism also requires that both the original source
and target models, as well as the updated target model
coexist in a single Alloy instance. Presenting them to-
gether to the user would be very confusing, so we opted
to project the instance over concrete models, focusing
first on the updated model, but allowing the user to vi-
sualize the others if he so desires (Alloy’s magic theme
would try to infer such projections [44], but our experi-
ments showed that it would fail to pick the desired one
in this particular case). To better highlight the differ-
ences between the original and the repaired models, the
elements inserted or removed by the repair are painted
in a different color (green), while the existing elements
are painted gray. Calculating the GED ∆ between Al-
loy instances already requires calculating the symmetric
difference between their elements (and links). Since the
Alloy visualizer allows subset signatures to be drawn
differently, that component of the ∆ function is reused
to that end. Elements belonging to different classes are
distinguished by shape.

Like in [44], enumeration literals are hidden and
fields whose target type is an enumeration are presented
as node labels rather than as edges to the enumera-
tion literals. However, we need not use heuristics to
detect enumerations, as their existence can be detected
directly in the Ecore meta-model. Following the same
reasoning, Alloy fields that originated from attributes in
the meta-model are also presented as node labels rather
than as edges to the attribute’s value node, to minimize
the number of visual elements. As a consequence of the
projected model states, sets end up also being repre-
sented by node labels.

Finally, we are also able to determine a suitable
spanning tree for the graph, that defines its dominant
hierarchical structure. In our context, these are repre-
sented by the containment associations of the meta-
model, which define the overall structure of the model
instances, the remaining associations depicting only ref-
erences between existing elements. In the Alloy visual-
izer spines are defined by tagging such fields as influ-
encing the layout.

Figure 10 shows two models: the left-one conforms
to the RDBMS meta-model and is depicted with the stan-
dard Eclipse XMI editor; the right-one conforms to the
UML meta-model and is depicted with the embedded Al-
loy visualizer, using the automatically inferred theme.

http://www.eclipse.org/xtext/

20 Nuno Macedo, Alcino Cunha

Fig. 10: A snapshot of Echo, with RDBMS and UML mod-
els depicted with Eclipse’s XMI editor and with the em-
bedded Alloy visualizer, respectively.

Note how the graph is adapted to the UML meta-model:
different classes are shaped differently, while the at-
tribute name and the set persistent are presented
as labels rather than edges. All information not rele-
vant to the presentation of the model is hidden. The
class diagram is a very simple company model, where
there are Employee and Employer classes, which are
both extensions of Person. Each Person has a name,
which is inherited by the persistent classes Employee
and Employer.

The models in Fig. 10 are consistent with the QVT-
R uml2rdbms bidirectional transformation, hence the
relational scheme on the left-hand-side with the two
corresponding tables. The Employee table has a salary
column, whose matching attribute in the UML model is
painted green (in contrast to the other elements painted
gray). This means that this attribute has just been in-
serted by Echo in order to restore consistency between
the two models.

Figure 11 presents models kept consistent by the
hsm2nhsm transformation. The original HSM model was
a simple state machine with two top-level states, Idle
and Active. Active is a composite state, containing
two sub-states, Waiting and Running, with a transi-
tion from Idle directly to Waiting. In the collapsed
view, Waiting and Running are dropped, but the tran-
sition between the sub-state Waiting and the top-level
state Idle is inherited by Active. It is worth noting
that in this example HSM and NHSM are two different
meta-models, and thus the different shape assigned to
elements of similarly named classes. At some point, the

R&S ≡ R, if R in S (∩-Subset)

R&S ≡ S, if S in R (∩-Subset)

R:>A ≡ R, if univ.R in A (ρ-Subset)

A<:R ≡ R, if R.univ in A (δ-Subset)

Fig. 12: Redundancy elimination.

NHSM model was updated with the insertion of a transi-
tion from Active to Idle, breaking the consistency be-
tween the models. When propagating the update, Echo
proposes three minimal solutions. Figure 11 presents
two of them: set the composite state Active as the
source of the new transition or choose instead one of its
sub-states, in this case, Waiting. In the third minimal
repair (not shown) the sub-state Running is set as the
source of the new transition.

5.3 Optimizing Alloy Models

The major caveat of model finding approaches is scala-
bility. While we are aware that our technique will never
be as efficient as syntactic approaches (even if more ex-
pressive), in this section we present some optimizations
that enable its application to many realistic examples.
Although a novel contribution, the reader uninterested
in Alloy technical details may skip this section as it does
not affect the semantics of the proposed technique.

As presented in Section 2.3, QVT-R semantics re-
lies heavily on nested forall-there-exists quantifications.
These introduce inefficiency, since the complexity of
the generated formulas may prevent skolemization and
other optimizations performed by Kodkod [50] (the un-
derlying relational model finder that supports Alloy)
when translating to SAT. As such, the main goal of our
optimization procedure is to eliminate (or reduce the
scope of) as many quantifiers as possible, sometimes
taking advantage of meta-model knowledge not readily
available to Kodkod.

Figure 13 presents the equivalence laws used by our
system (as rewriting rules oriented from left to right) to
eliminate or reduce the scope of quantifiers. Among the
most effective, we have the one point rules, that require
as side-condition that the set over which the quantified
variable ranges is a singleton. Using knowledge about
the meta-model, this condition is many times trivial to
check, namely when such set is the result of a naviga-
tion expression over a mandatory attribute. Figure 12
presents some additional laws that are used to eliminate
redundant expressions, again using knowledge about
the meta-model.

Least-change Bidirectional Model Transformation with QVT-R and ATL 21

(a) NHSM model. (b) Possible HSM model. (c) Possible HSM model.

Fig. 11: hsm2nhsm-consistent models as presented in Echo.

To simplify the application of such rules, naviga-
tion expressions are kept normalized in the shape x.R,
where x is typically a quantified variable and R an ar-
bitrary composition of binary relations or their con-
verse. Such normalization can be done by application
of associativity and converse laws concerning the re-
lational composition operator, such as R.x ≡ x.∼R or
(∼(R.S)) ≡ (∼S).(∼R). Moreover, in this normaliza-
tion we attempt to isolate the nearest quantified vari-
able in a membership check using the rule y in x.R ≡
x in y.(∼R) to potentiate the application of trading
rules. Finally, whenever possible, we also replace mul-
tiplicity checks by their navigational equivalent, for ex-
ample using the law some x.R ≡ x in x.R.(∼R).

As an optimization example, consider the most sim-
ple QVT-R transformation from uml2rdbms, namely
relation P2S in the direction of RDBMS. By applying
QVT-R semantics the following formula would result
from our embedding in Alloy:
all p:package.m,n:String | n in p.(name.m) =>
some s:schema.m’ | n in s.(name.m’)

Although simple, this formula already contains 3 quan-
tifications whose range is loosely restricted (for instance,
n is freely quantified over all strings). Figure 14 shows
how this formula can be simplified using the above
rules. To understand how the side-conditions can be
easily checked using meta-model knowledge, consider
the name attribute in the Package class of the UML
meta-model. As we have seen in Section 3.2, when em-
bedding this meta-model in Alloy this attribute is en-
coded as a relation of type Package -> String -> UML
(to be used always as a binary relation in the context
of particular UML model—in our optimization example

the model m), constrained by the following multiplicity
and inclusion dependency fact.

all m:UML | name.m in package.m -> one String

From this we can deduce that p.(name.m) in String,
the side-condition required for the first application of
rule ∩-Subset, that one p.(name.m), the side-condition
to the application of ∀-One-Point, and that the do-
main of name.m is a subset of package.m, formally
(name.m).univ in package.m, in the final applica-
tion of δ-Subset.

[This example may not be credible and is bugging
me a little, because if the one point rule was applied
before the expansion of some then the last universal
quantifier could not be eliminated. Which leads to the
obvious question about confluence...]

This optimization procedure essentially attempts to
translate relational logic formulas to the, so-called, point-
free notation: a version of this logic with no variables
(nor quantifiers). Such notation is well-know for its ame-
nability to proof and optimization through simple equa-
tional reasoning [39], and transformation of Alloy for-
mulas to such style has been explored before [13,30],
as means to perform unbounded verification proofs. In
this case, its application to optimization is particularly
effective, since it takes advantage of the fact that formu-
las originating from our embedding follow a very spe-
cific pattern, and information about the meta-model is
readily available to speed-up side-condition checks.

Finally, some other optimizations, not related to
quantifier elimination, are also performed. For example,
when embedding meta-models in Alloy, fields are not
created for associations marked as opposite of another

22 Nuno Macedo, Alcino Cunha

(all x:none | R) ≡ true (∀-Empty)
(some x:none | R) ≡ false (∃-Empty)
(all x:A | true) ≡ true (∀-Top)

(all x : A | false) ≡ no A (∀-Bottom)
(some x : A | true) ≡ some A (∃-Top)

(some x:A | false) ≡ false (∃-Bottom)
(all x:A | R) ≡ R[x := A], if one A (∀-One-Point)

(some x:A | R) ≡ R[x := A], if one A (∃-One-Point)

(all x:A | x in B => R) ≡ (all x:A&B | R) (∀-Trading)

(some x:A | x in B && R) ≡ (some x:A&B | R) (∃-Trading)

(all x:A | x in B) ≡ A in B (⊆-Def-Set)

(all x:A | x.R in x.S) ≡ A<:R in S (⊆-Def-Rel)

Fig. 13: Quantifier elimination and restriction.

all p:package.m, n:String | n in p.(name.m) => some s:schema.m’ | n in s.(name.m’) (∀-Trading)

all p:package.m, n:String&(p.(name.m)) | some s:schema.m’ | n in s.(name.m’) (∩-Subset)

all p:package.m, n:p.(name.m) | some s:schema.m’ | n in s.(name.m’) (Normalization)

all p:package.m, n:p.(name.m) | some s:schema.m’ | s in n.∼(name.m’) (∃-Trading)
all p:package.m, n:p.(name.m) | some s:(schema.m’)&(n.∼(name.m’)) | true (∃-Top)
all p:package.m, n:p.(name.m) | some (schema.m’)&(n.∼(name.m’)) (∩-Subset)
all p:package.m, n:p.(name.m) | some n.∼(name.m’) (Normalization)

all p:package.m, n:p.(name.m) | n in n.∼(name.m’).(name.m’) (∀-One-Point)

all p:package.m | p.(name.m) in p.(name.m).∼(name.m’).(name.m’) (⊆-Def-Rel)

(package.m)<:(name.m) in (name.m).∼(name.m’).(name.m’) (δ-Subset)

(name.m) in (name.m).∼(name.m’).(name.m’)

Fig. 14: Optimization example.

existing association. Instead, when a call to an opposite
association occurs in a formula (e.g. namespace.m), it
is just replaced to a call on its opposite using the con-
verse operator (e.g. ∼(classes.m)). This further re-
duces the overall amount of variables and constraints
during SAT solving.

Note that our tool performs these optimizations only
once, when the meta-models and transformations are
loaded and embedded into Alloy, and not every time
the transformation is run after an update. As such, the
time spent on the optimizations (which is almost neg-
ligible anyway) does not affect the performance of the
least change update propagation procedure.

6 Evaluation

As made evident on Section 3.3, choosing between GED
and OBD imposes a clear tradeoff between control over
the updates and user overload due to the mandatory

definition of operations. In this section we start by an-
alyzing the consequences of this choice with concrete ex-
amples. We then discuss the impact of bidirectional (as
opposed to unidirectional) checking semantics in QVT-
R. Finally we present some efficiency tests to access the
scalability of our technique.

6.1 GED vs. OBD

Consider the UML class diagram and database scheme
from Fig. 10, and imagine that the database manager
decides that employers also have salaries, creating a col-
umn salary in the Employer table. Since GED is meta-
model independent, our tool automatically infers how
to calculate model distance according to it. In partic-
ular, the minimal repairs on the UML model according
to GED are either setting Employee as a super-class
of Employer or to move the attribute salary from
Employee up to Person, both at distance 2. If none of

Least-change Bidirectional Model Transformation with QVT-R and ATL 23

these are desirable repairs, the user can ask for the next
closest solution at distance 3, which in this case is the
introduction of a new attribute salary in Employer.

Suppose the user wants to rule out all repairs that
change the class hierarchy or assign the same cost to
either create a new attribute or move an attribute from
one class to another. To do so, he can specify (using
OCL) which are the valid edit operations that can be
performed to repair a model. For our running example,
we only assume the existence of operations whose sig-
nature is presented in Fig. 1. Notice that there are no
edit operations that modify the hierarchy, and both cre-
ation and moving of an attribute are now atomic edit
operations. Through OBD our technique finds the mini-
mal sequence of edit operations that repairs the model.
In our company running example, there will now be
two minimal repairs, namely insert the new attribute
salary in Employer, or moving the existing one from
Employee to the common super-class Person, which
were considered at different distances using GED. As
expected, the solution which set Employer as a sub-
class of Employee has also been excluded.

For another example of tradeoff between GED and
OBD, consider the expansion/collapse of state machines
example. Imagine the user wants to allow the occur-
rence of errors and creates a new simple state Error
on the collapsed diagram and a transition to it from
Active. Propagating this update back to the expanded
state machine using GED would yield 3 possible so-
lutions at minimal distance: the creation of the sim-
ple state Error with a transition to it from either the
composite state Active or the substates Waiting or
Running, all at minimal cost. The user could easily
navigate through these solutions and select the most
suitable one depending on the context. [Fig. 11 could
have depicted this example.][Realmente...]

Suppose however that the user prefers that transi-
tions inserted in the collapsed state machine are ap-
plied only at the top-level states. If that is the case, be-
sides the addTopState and operations addSubState,
he could simply define an addTransition operation in
a way that it only allows the insertion of transitions be-
tween top-level states. Figure 3 presents the signatures
of these edit operations. In that case, if the previous up-
date was propagated using the OBD metric, it would
present only one solution at minimal distance, namely
the insertion of a new transition from the composition
state Active to Error.

We believe this combination of a meta-model inde-
pendent metric and a user parameterizable one provides
a high level of flexibility to our technique.

6.2 Bidirectional vs. Unidirectional Checking
Semantics

While the prevalent idea is that the QVT-R standard
forces checking semantics to be bidirectional (i.e., run
the test in both directions) [4], this requirement may be
too strong in some contexts. In fact, some ambiguities
in the standard allow different interpretations and Mod-
elMorf [49], the tool that allegedly follows the QVT-R
standard the closest, allows unidirectional checks. In
this section we briefly analyze the consequences of this
directionality.

Let us consider the uml2rdbms transformations, and
compare a unidirectional consistency check in the di-
rection of UML and a bidirectional check as prescribed
by the QVT-R standard. The main difference between
them is that, while in the bidirectional version, only ex-
tra classes not matched by any relation are disregarded
(insertion of a non-persistent class does not introduce
inconsistencies), in the unidirectional version any extra
class not related to a table is disregarded (insertion of
a class, even if persistent, never causes inconsistencies).
Clearly, this is undesirable in uml2rdbms transforma-
tion, and would be as well in hsm2nhsm.

However, this is not always the case. Consider for
instance the consistency relation between UML class
diagrams and UML sequence charts. One of the basic
consistency constraints between these models is that all
classes mentioned in the sequence chart must exist in
the class diagram; however, not all classes in the class
diagram must exist in the sequence chart. This kind
of consistency relation would be impossible to specify
with QVT-R’s forall-there-exists bidirectional checks,
unless the classes which are mentioned in the sequence
chart were somehow (artificially) marked in the class
diagram, so that a pattern to filter them out can be
defined in the consistency relations.

Our tool’s default checking mode uses a bidirec-
tional semantics, but the fact that it consists of the con-
junction of the two unidirectional tests makes it easy to
adapt the system to perform unidirectional tests when
desirable.

In fact, this asymmetry issue is just one dimension of
a more general problem that emerges when considering
multi-directional transformations. In [32] we show that
our embedding can be trivially generalized to the multi-
directional scenario, where updates on multiple models
are propagated to a set of designated target models
(another feature not currently offered by any existing
QVT-R tool). We also show that the QVT-R standard
enforcement semantics for multiple models—the forall-
there-exists constraint from every source model to a

24 Nuno Macedo, Alcino Cunha

n nodes edges variables
2 18 27 449
3 25 39 763
4 32 52 1063
5 39 63 1469
6 46 75 1941
7 53 87 2479
8 60 99 3083
9 67 111 3753
10 74 123 4489

Table 2: Scalability tests size for enforce mode with
GED and d = 1.

single target model—is too restrictive, excluding many
interesting application scenarios.

6.3 Scalability

At the time of writing, no benchmark for the assess-
ment of bidirectional transformation tools has been pro-
posed. Thus, to assess the scalability of our technique
we devised a class of synthetic examples of the famil-
iar uml2rdbms transformation, with the intention of
achieving linear increases both in model size (number
of nodes and edges when seen as a graph) and required
update distance.

The shape of a UML class diagram of dimension n

consists of a spine of n non-persistent Class elements
(identified as class i at level i), each with a persistent
sub-Class (identified as class i′ at level i), which have
themselves a single Attribute (with the same name i′

as the owning class). Thus, a UML model of dimension
n has 5n+ 2 nodes and 8n edges. For instance, Fig. 15
depicts the UML model for n = 3, the number of nodes
being the number of model elements (10) and string
literals (7), while the number of edges is the number
of association links (14) and element’s attributes (13),
the latter shown as node labels in the Fig. 15. The cor-
responding RDBMS models, to be uml2rdbms-consistent,
must contain a Table with a single Column for each per-
sistent Class i′, that is, 3n+2 nodes and 4n+1 edges.
Since the UML and RDBMS models coexist, the total size
of the environment is the sum of the respective sizes,
with the exception of string literals which are shared.
These models were generated using Echo’s model gen-
eration feature, which allows the specification of model
sizes and the definition of extra OCL constraints that
parametrize the shape of the generated solutions.

To introduce inconsistencies, new Column elements
are inserted in the RDBMS model that impose repairs on
the UML model. The smallest inconsistency consists of
inserting in Table n′ a Column (n−1)′. To solve this in-
consistency, the minimal update is to move Attribute

Fig. 15: Synthetic UML model with n = 3.

Fig. 16: Synthetic RDBMS model with n = 3 and d = 2.

(n− 1)′ in the UML model to the (n− 1) non-persistent
Class, so that it is shared by both Class n′ and Class
(n − 1)′. This has a cost ∆ = 2 for GED and ∆ = 1

for OBD. Increasingly distant updates d <n can be at-
tained by inserting in every Table i′ such that i > n−d
every Column j′ such that n−d 6 j < i, resulting in up-
dates ∆ = 2d for GED and ∆ = d for OBD in the UML
model. Thus, an inconsistency at distance d introduces
d(d+1)

2 nodes and d(d+1) edges. As an example, Fig. 16
presents the RDBMSmodel for n = 3 with inconsistencies
for d = 2.

All tests were run using Echo over Alloy 4.2 with
the MiniSat solver, on a 1,8 GHz Intel Core i5 with 4
GB memory running OS X 10.8. We performed exper-
iments for models up to n = 10 and update distance
up to d = 3, when applicable. Table 2 summarizes the
total size of both models for n up to 10 given an up-

Least-change Bidirectional Model Transformation with QVT-R and ATL 25

date d = 1. The last column represents the number
of variables present in the SAT problem generated by
Kodkod, Alloy’s underlying relational model finder [50],
when repairing the consistency between both models.
All tests were run multiple times as to get the average
performance values.

Figure 17 compares execution times (shown in log
scale) of runs with and without the optimizations pre-
sented in Section 5.3. Figure 17 compares checkonly
runs, and the gains are very significant. For n = 10

the optimized version takes only 7% of the time spent
by the non-optimized version, with average gains of
45%. Checkonly runs do not require the measurement
of model distances, so the choice of the distance metric
does not affect the performance. Figure 17b compares
enforcement runs using GED and OBD again with and
without formula simplifications, for a fixed d = 1. The
optimized versions are in average 29% and 56% more
efficient than the non-optimized versions, for GED and
OBD respectively, but again the difference grows fast,
and for n = 10 the optimized versions take only 7%

of the execution time of the non-optimized ones for
both GED and OBD. As already mentioned in Sec-
tion 5.3, optimizing Alloy formulas may take some time,
but since this optimization is performed only once at
static-time (when the transformations are translated to
Alloy), it does not affect the time effectively spent in
the repair. The gain from enforcement executions using
GED to those using OBD is also significant (in aver-
age the first takes 75% of the time of the second, and
around 40% for n = 10), but these results should be
analyzed with caution, as they occur in a controlled
scenario where GED repairs require only twice as much
solving iterations than the ones with OBD. In practice,
OBD can be much faster than GED if each atomic op-
eration is more complex, combining multiple insertion-
s/deletions of nodes and edges, allowing inconsistencies
to be repaired with smaller distances.

Figure 18 depicts the execution times of checkonly
and enforcement modes (with optimizations), using both
GED and OBD, respectively, as the dimension n of the
model increases, and for different fixed update distances
d. Execution times for d = 0, i.e., consistency checks,
take up to 8s for n = 10. While these values are not
competitive against other existing techniques for con-
sistency checking, they are due to the lack of support for
instances of Alloy: partial solutions must be encoded by
additional singleton signatures and constraints in the
model. The performance in this case could be signifi-
cantly improved by embedding the technique directly
in Kodkod or by using Alloy extensions with support for
partial instances, like the one proposed in [37], as our
current studies show [10]. The impact on running times

of the increasing d is intrinsic to our iterative technique,
since every ∆ step requires a new model finding run.
This is better depicted in Fig. 19 that presents the same
data but in relation to increasing distance ∆, for fixed
model dimensions n.

Although not ready to handle industrial-size mod-
els, Echo’s greatest strength lies in its ability to al-
low the user to quickly and simply analyze and debug
transformation specifications. In fact, a great challenge
in model transformation is to guarantee that the be-
havior of the specified artifacts reflects the intention
of the user: with a predictable least-change semantics
and quick provision of feedback to the user, Echo excels
in these tasks. In this context, the size of the models
is not as crucial—as put by the small scope hypothe-
sis advocated by the Alloy creators [23], most problems
on specifications may be flagged by small instances.
The fact that we were able to detect heretofore un-
detected problems in the standard’s uml2rdbms trans-
formation attests this. Nonetheless, despite the size of
the models, the complexity introduced by the meta-
models and inter-model constraints could alone deem
solving unfeasible—in fact, without the optimizations
presented in Section 5.3 that was precisely the case.
In the future we intend to develop functionalities dedi-
cated to automatically check specific properties of model
transformations—like the fact that they are total, de-
terministic, or that they always produce well-formed
models—to fully exploit this facet of Echo. As our tech-
nique is already based on model finding, these exten-
sions are rather straight-forward to implement.

7 Related Work

QVT-R Tool Support Regarding tool support for QVT-
R transformations, Medini and ModelMorf are the main
existing functional tools. Medini [22] is an Eclipse plugin
for a subset of the QVT-R language. Although popu-
lar, its (unknown) semantics admittedly disregards the
semantics from the QVT standard (it does not have a
checkonly mode, for instance). To support incremental
executions, it stores explicit traces between elements of
the two models. ModelMorf [49] allegedly follows the
QVT standard closely (although once again the con-
crete semantics is unknown), since its development team
was involved in the specification of the standard. How-
ever, the development of the tool seems to have stopped.
None of these tools has support for OCL constraints on
the meta-models. Other prototype tools have been pro-
posed but once again the implemented semantics are
not completely clear. Moment-QVT [3] is an Eclipse plu-
gin for the execution of QVT-R transformations by re-
sorting to the Maude rewriting system; [28] proposes

26 Nuno Macedo, Alcino Cunha

2 4 6 8 10
102

103

104

105

n

t(
m
s)

RAW

OPT

(a) Checkonly.

2 4 6 8 10
103

104

105

n

t(
m
s)

GED/RAW

GED/OPT

OBD/RAW

OBD/OPT

(b) Enforcement (d = 1) for GED and OBD.

Fig. 17: Execution times for optimized (OPT) and non-optimized (RAW) implementations.

2 4 6 8 10
102

103

104

105

n

t(
m
s)

∆ = 0

∆ = 2

∆ = 4

∆ = 6

(a) GED.

2 4 6 8 10

103

104

105

n

t(
m
s)

∆ = 0

∆ = 1

∆ = 2

∆ = 3

(b) OBD.

Fig. 18: Execution times over model size n, for fixed ∆ values.

0 1 2 3 4 5 6

103

104

105

∆

t(
m
s)

n = 2

n = 4

n = 6

n = 8

n = 10

(a) GED.

0 1 2 3

103

104

105

∆

t(
m
s)

n = 2

n = 4

n = 7

n = 10

(b) OBD.

Fig. 19: Execution times over model distance ∆, for fixed n values.

the embedding of QVT-R in Colored Petri Nets. All
these tools support only unidirectional transformations,
in the sense that they ignore the original target model.
As such, they are not able to retrieve information not
present in the source, leading to the generation of com-
pletely new models every time the transformation is ap-
plied. Once again, none supports OCL constraints on
the meta-model. In [16] the authors discuss the possible
implementation of QVT-R transformations in TGGs.
While some TGGs tools prevent loss of information

by supporting incremental executions [15] or partial
matches between domains [17,20], this embedding fo-
cuses only on the embedding of QVT-R specifications
in TGG frameworks, disregarding the consequences on
the enforcement semantics.

A technique that follows an approach similar to ours
is the JTL tool [8], although it does not support QVT-
R, but rather a restricted QVT-like language. Like ours,
JTL generates models by resorting to a solver (the DLV
solver), which is able to retrieve some (unquantified)

Least-change Bidirectional Model Transformation with QVT-R and ATL 27

information from the original target. However, it is not
clear how the solver chooses which information to re-
trieve or how the new model is generated. It also forces
the totality of the transformation, returning inconsis-
tent models in case there is no consistent one.

QVT-R Semantics Recently there has been an attempt
to formalize the standard QVT-R enforce semantics [5],
following previous work on the checking semantics [47,
4]. As prescribed in the standard, to enforce the forall-
there-exists semantics, the procedure consists of a cre-
ation phase of new target elements whenever a source
element does not have a matching target (or modifi-
cation of existing ones, if keys are used), followed by
a deletion phase, to remove target elements that are
no longer matching a source element. These phases oc-
cur only at top-level relations, as when and where are
assumed to be predicates that top-level quantified ele-
ments must comply. This procedure does not take into
consideration additional constraints on the meta-model,
in particular no specific technique is proposed to fill-in
mandatory attributes and associations of newly created
(or modified) elements, taking into account such meta-
model constraints, and when and where clauses (like-
wise to our technique, the usage of solvers is hinted as a
possible solution). Since it closely follows the standard,
this semantics also suffers from the problems already
described in Section 2.4.

Two approaches have been proposed for the valida-
tion of QVT-R transformations that also rely on solvers.
In [14] the authors use Alloy to verify the correctness of
QVT-R specifications, in order to guarantee the well-
formedness of the output and avoid run-time errors.
In [7] OCL invariants of the shape forall-there-exists are
inferred from QVT-R transformations (much like the
checking semantics), that allow the validation of QVT-
R specifications under a set of properties. It supports
OCL constraints in the meta-model and recursive calls
are translated to recursive OCL specifications. A similar
technique has also been developed for the verification
of ATL transformations [6]. However, these approaches
are not focused on enforce mode and its semantics, and
do not analyze the behavior of the transformation for
concrete input models, which is the focus of our em-
bedding. As already stated, our technique could also
be adapted to support the validation of similar prop-
erties, like checking if a transformation is injective or
that all consistent models are well-formed.

Bidirectionalization of ATL The relation between ATL
and QVT has previously been explored in [25]. How-
ever, the focus was on aligning the architecture of the
two languages, without any semantic considerations.

They suggest that interoperability could be attained by
mapping both QVT-R and ATL to QVT Operational.

Some previous work has been done towards the bidi-
rectionalization of ATL. In [52] the authors infer a syn-
chronization procedure from a subset of the byte-code
produced by the ATL compiler, in the sense that both
the source and target model can be updated in or-
der to restore consistency. However, it is not clear how
the restrictions on the byte-code are reflected on the
ATL language. In [45] the authors interpret models
as graphs and ATL declarative rules as UnCAL op-
erations over said graphs, which are bidirectionalized
in the GRoundTram bidirectional graph transforma-
tion system [21]. However, the supported subset of the
ATL language is much more limited than ours, namely
matching rules cannot have source patterns and target
bindings must comply to a very limited OCL subset,
excluding rule calls (implicit or explicit). As discussed
in Section 4.2, if we see our ATL bidirectional transfor-
mations as lenses, the bidirectional properties from [45]
also hold in our framework. None of these approaches
are concerned with enforcing least-change updates.

Solver-based Model Repair Some research have been
made on applying model finding techniques to model
repair problems, in particular using Alloy. Model repair
and bidirectional model transformations are closely re-
lated, since the two meta-models can be merged in a sin-
gle global meta-model, where inter-model consistency
could be specified by standard intra-model constraints,
with the tweak that, when propagating an update to
the target, model repairs should only be allowed in the
subset of the global merged model conforming to the
original source meta-model. Even if existing model re-
pair tools do not implement this tweak, and thus cannot
be directly applied to bidirectional model transforma-
tions, the underlying repair techniques are quite similar
and both areas could benefit from crossbreeding.

In [27] the authors propose a general approach for
constraint-based solving in the context of MDE (includ-
ing application to model repair), using the Alloy and
OPL solvers as concrete examples. However, the origi-
nal inconsistent model is specified as the lower bound
for the new model, meaning that the solver will only be
able to add new atoms and relations while solving the
constraints. Following a similar approach, [48] assesses
the feasibility of using Kodkod to repair inconsisten-
cies. Given an inconsistent Kodkod problem, a consis-
tent problem is found by relaxing the bounds of the
original model in order to allow the addition of new
relations or the removal of relations suspected of caus-
ing the selected inconsistencies. This assumes that the
concrete inconsistencies were previously detected by an

28 Nuno Macedo, Alcino Cunha

external tool. In both approaches there is also no con-
trol over how close the new model is to the original one
and the authors do not reason on how to manage the
creation of new atoms. [19] describes a technique for
generating quick fixes for DSMLs embedding on CSP
over models. The technique guarantees that the num-
ber of inconsistencies on the model decreases, even if
side-effects occur. This is achieved by applying every
candidate fix to the inconsistent model and detecting
and counting the inconsistencies in the resulting model.
In terms of expressivity, this last approach is the closest
to ours, but, being also solver based, it suffers from the
same scalability issues.

Least-change Transformations As far as we are aware,
studies on least-change bidirectional transformations are
limited to the seminal work of Meertens [35], as already
discussed in Section 2.4, and our own previous work on
composing least-change lenses [34]. While it would be
interesting to explore the compositionality of QVT-R
transformations under the least-change principle, clas-
sic maintainers are already known not to be composi-
tional [35], greatly lowering the expectations for a com-
posable least-change QVT-R language.

Our least-change approach, like QVT-R, is state-
based, in the sense that transformations (and thus the
model distance metrics) consider only the pre- and post-
states of the model, in contrast to operation-based frame-
works [11], where transformations are provided extra in-
formation about how the updated model was attained,
either through the applied edit sequence or through a
sameness relation between model elements. This extra
knowledge allows the transformations to disambiguate
overlapping scenarios, the classic example being the
ability to distinguish modifications from deletions/in-
sertions, which under state-based frameworks are undis-
tinguishable unless elements are assigned unique keys.

8 Conclusions and Future Work

This article proposed a QVT-R bidirectional model trans-
formation tool, supporting both the standard check-
ing semantics and a clear and precise enforcement se-
mantics based on the principle of least change. It also
supports meta-models annotated with OCL constraints
and specification of allowed edit operations, which al-
lows its applicability to non-trivial domains and pro-
vides a fine-grained control over non-determinism. The
implementation is based on an embedding in Alloy, tak-
ing advantage of its model finding abilities. We have
also extended our tool to support the bidirectionaliza-
tion of ATL transformations. The tool is deployed as a
plugin for the Eclipse IDE, focusing on user-friendliness,

namely presenting in a clear way which model repairs
are being applied.

Being solver-based, the main drawback of the pro-
posed tool is performance. Improving it is the main goal
of our future work: we intend to explore incremental
solving techniques to speed-up the execution of suc-
cessive commands with increasing scope, and to define
mechanisms to infer which parts of target model can be
fixed a priori in order to speed-up solving. In particu-
lar, we are currently analyzing the impact of embedding
our technique directly in Kodkod, which has support
for partial instances, and adapting it to rely on Max-
SAT solvers instead, through the use of target-oriented
solving techniques [10]. Nonetheless, even in its present
status the tool is already fully functional, much due
to the development of optimization techniques. In par-
ticular, it already proved effective in debugging existing
transformations, namely helping us unveiling several er-
rors in the well-known object-relational mapping that
illustrates QVT-R specification. In the future we plan
to further explore the debugging aspect of the tool by
providing means to automatically verify and validate
correctness properties of model transformations.

References

1. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On chal-
lenges of model transformation from UML to Alloy. Soft-
ware and Systems Modeling 9, 69–86 (2010)

2. ATLAS group: ATL user guide. http://wiki.eclipse.
org/ATL/User_Guide

3. Boronat, A., Carsí, J., Ramos, I.: Algebraic specification
of a model transformation engine. In: FASE’06, LNCS,
vol. 3922, pp. 262–277. Springer (2006)

4. Bradfield, J., Stevens, P.: Recursive checkonly QVT-R
transformations with general when and where clauses via
the modal mu calculus. In: FASE’12, LNCS, vol. 7212,
pp. 194–208. Springer (2012)

5. Bradfield, J., Stevens, P.: Enforcing QVT-R with mu-
calculus and games. In: FASE’13, LNCS, vol. 7793, pp.
282–296. Springer (2013)

6. Büttner, F., Egea, M., Cabot, J., Gogolla, M.: Verifica-
tion of ATL transformations using transformation models
and model finders. In: ICFEM’12, LNCS, vol. 7635, pp.
198–213. Springer (2012)

7. Cabot, J., Clarisó, R., Guerra, E., de Lara, J.: Verifica-
tion and validation of declarative model-to-model trans-
formations through invariants. Journal of Systems and
Software 83(2), 283–302 (2010)

8. Cicchetti, A., Ruscio, D.D., Eramo, R., Pierantonio, A.:
JTL: a bidirectional and change propagating transforma-
tion language. In: SLE’10, LNCS, vol. 6563, pp. 183–202.
Springer (2010)

9. Cunha, A., Garis, A., Riesco, D.: Translating between
Alloy specifications and UML class diagrams annotated
with OCL. Software and Systems Modeling pp. 1–21
(2013)

10. Cunha, A., Macedo, N., Guimarães, T.: Target oriented
relational model finding. In: FASE’14, LNCS, vol. 8411,
pp. 17–31. Springer (2014)

http://wiki.eclipse.org/ATL/User_Guide
http://wiki.eclipse.org/ATL/User_Guide

Least-change Bidirectional Model Transformation with QVT-R and ATL 29

11. Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann,
F., Orejas, F.: From state- to delta-based bidirectional
model transformations: The symmetric case. In: MoD-
ELS’11, LNCS, vol. 6981, pp. 304–318. Springer (2011)

12. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C.,
Schmitt, A.: Combinators for bidirectional tree transfor-
mations: A linguistic approach to the view-update prob-
lem. ACM Trans. Program. Lang. Syst. 29(3) (2007)

13. Frias, M.F., Pombo, C.L., Aguirre, N.: An equational cal-
culus for Alloy. In: ICFEM’04, LNCS, vol. 3308, pp. 162–
175. Springer (2004)

14. Garcia, M.: Formalization of QVT-Relations: OCL-based
static semantics and Alloy-based validation. In: MDSD
Today 2008, pp. 21–30. Shaker Verlag (2008)

15. Giese, H., Wagner, R.: From model transformation to in-
cremental bidirectional model synchronization. Software
and System Modeling 8(1), 21–43 (2009)

16. Greenyer, J., Kindler, E.: Comparing relational
model transformation technologies: implementing
Query/View/Transformation with Triple Graph Gram-
mars. Software and System Modeling 9(1), 21–46
(2010)

17. Greenyer, J., Pook, S., Rieke, J.: Preventing information
loss in incremental model synchronization by reusing el-
ements. In: ECMFA’11, LNCS, vol. 6698, pp. 144–159.
Springer (2011)

18. Guerra, E., de Lara, J.: An algebraic semantics for QVT-
relations check-only transformations. Fundam. Inform.
114(1), 73–101 (2012)

19. Hegedüs, Á., Horváth, Á., Ráth, I., Branco, M.C., Varró,
D.: Quick fix generation for DSMLs. In: VL/HCC’11, pp.
17–24. IEEE (2011)

20. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin,
Z., Xiong, Y., Gottmann, S., Engel, T.: Model synchro-
nization based on triple graph grammars: correctness,
completeness and invertibility. Software and System
Modeling pp. 1–29 (2013)

21. Hidaka, S., Hu, Z., Inaba, K., Kato, H., Nakano, K.:
GRoundTram: An integrated framework for developing
well-behaved bidirectional model transformations. In:
ASE’11, pp. 480–483. IEEE (2011)

22. ikv++ technologies ag: Medini QVT. http://projects.
ikv.de/qvt/

23. Jackson, D.: Software Abstractions: Logic, Language, and
Analysis, revised edn. MIT Press (2012)

24. Jouault, F., Kurtev, I.: Transforming models with ATL.
In: MoDELS’05 Satellite Events, LNCS, vol. 3844, pp.
128–138. Springer (2005)

25. Jouault, F., Kurtev, I.: On the architectural alignment of
ATL and QVT. In: SAC’06, pp. 1188–1195. ACM (2006)

26. Jouault, F., Tisi, M.: Towards incremental execution of
ATL transformations. In: ICMT’10, LNCS, vol. 6142, pp.
123–137. Springer (2010)

27. Kleiner, M., Fabro, M.D.D., Albert, P.: Model search:
Formalizing and automating constraint solving in MDE
platforms. In: ECMFA’10, LNCS, vol. 6138, pp. 173–188.
Springer (2010)

28. de Lara, J., Guerra, E.: Formal support for QVT-
Relations with Coloured Petri Nets. In: MoDELS’09,
LNCS, vol. 5795, pp. 256–270. Springer (2009)

29. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design
of JML: a behavioral interface specification language for
java. ACM SIGSOFT Software Engineering Notes 31(3),
1–38 (2006)

30. Macedo, N.: Translating Alloy specifications to the point-
free style. Master’s thesis, Escola de Engenharia, Univer-
sidade do Minho, Braga, Portugal (2010)

31. Macedo, N., Cunha, A.: Implementing QVT-R bidirec-
tional model transformations using Alloy. In: FASE’13,
LNCS, vol. 7793, pp. 297 – 311. Springer (2013)

32. Macedo, N., Cunha, A., Pacheco, H.: Towards a frame-
work for multidirectional model transformations. In:
EDBT/ICDT’14 Workshops, CEUR Workshop Proceed-
ings, vol. 1133, pp. 71–74. CEUR-WS.org (2014)

33. Macedo, N., Guimarães, T., Cunha, A.: Model repair
and transformation with Echo. In: ASE’13, pp. 694–697.
IEEE (2013)

34. Macedo, N., Pacheco, H., Cunha, A., Oliveira, J.N.: Com-
posing least-change lenses. ECEASST 57 (2013)

35. Meertens, L.: Designing constraint maintainers for user
interaction. In: Third Workshop on Programmable Struc-
tured Documents. Tokyo University (2005)

36. Milicevic, A., Jackson, D.: Preventing arithmetic over-
flows in Alloy. In: ABZ’12, LNCS, vol. 7316, pp. 108–121.
Springer (2012)

37. Montaghami, V., Rayside, D.: Extending Alloy with par-
tial instances. In: ABZ’12, LNCS, vol. 7316, pp. 122–135.
Springer (2012)

38. Near, J.P., Jackson, D.: An imperative extension to Al-
loy. In: ASM’10, LNCS, vol. 5977, pp. 118–131. Springer
(2010)

39. Oliveira, J.N.: Extended static checking by calculation
using the pointfree transform. In: LerNet’08, LNCS, vol.
5520, pp. 195–251. Springer (2009)

40. OMG: MOF 2.0 Query/View/Transformation specifica-
tion (QVT), version 1.1 (2011). http://www.omg.org/
spec/QVT/1.1/

41. OMG: OMG Unified Modeling Language (UML), version
2.4.1 (2011). Available at http://www.omg.org/spec/
UML/2.4.1/

42. OMG: OMGObject Constraint Language (OCL), version
2.3.1 (2012). Available at http://www.omg.org/spec/
OCL/2.3.1/

43. OMG: OMG Meta Object Facility (MOF), version 2.4.1
(2013). Available at http://www.omg.org/spec/MOF/2.
4.1/

44. Rayside, D., Chang, F.S.H., Dennis, G., Seater, R., Jack-
son, D.: Automatic visualization of relational logic mod-
els. ECEASST 7 (2007)

45. Sasano, I., Hu, Z., Hidaka, S., Inaba, K., Kato, H.,
Nakano, K.: Toward bidirectionalization of ATL with
GRoundTram. In: ICMT’11, LNCS, vol. 6707, pp. 138–
151. Springer (2011)

46. Stevens, P.: Bidirectional model transformations in QVT:
semantic issues and open questions. Software and System
Modeling 9(1), 7–20 (2010)

47. Stevens, P.: A simple game-theoretic approach to check-
only QVT relations. Software and System Modeling
12(1), 175–199 (2013)

48. Straeten, R.V.D., Puissant, J.P., Mens, T.: Assessing the
Kodkod model finder for resolving model inconsistencies.
In: ECMFA’11, LNCS, vol. 6698, pp. 69–84. Springer
(2011)

49. Tata Research Development and Design Centre: Mod-
elMorf. http://www.tcs-trddc.com/trddc_website/
ModelMorf/ModelMorf.htm

50. Torlak, E., Jackson, D.: Kodkod: A relational model
finder. In: TACAS’07, LNCS, vol. 4424, pp. 632–647.
Springer (2007)

51. Voigt, K.: Structural graph-based metamodel matching.
Ph.D. thesis, University of Desden (2011)

52. Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M.,
Mei, H.: Towards automatic model synchronization from
model transformations. In: ASE’07, pp. 164–173. ACM
(2007)

http://projects.ikv.de/qvt/
http://projects.ikv.de/qvt/
http://www.omg.org/spec/QVT/1.1/
http://www.omg.org/spec/QVT/1.1/
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/OCL/2.3.1/
http://www.omg.org/spec/OCL/2.3.1/
http://www.omg.org/spec/MOF/2.4.1/
http://www.omg.org/spec/MOF/2.4.1/
http://www.tcs-trddc.com/trddc_website/ModelMorf/ModelMorf.htm
http://www.tcs-trddc.com/trddc_website/ModelMorf/ModelMorf.htm

	Introduction
	QVT Relations
	Embedding QVT-R in Alloy
	Bidirectionalizing ATL
	Deployment
	Evaluation
	Related Work
	Conclusions and Future Work

