30,374 research outputs found

    Biological implications of a discrete mathematical model for collagen deposition and alignment in dermal wound repair

    Get PDF
    We deveiop a novel mathematical model for collagen deposition and alignment during dermal wound healing. We focus on the interactions between fibroblasts, modelled as discrete entities, and a continuous extracellular matrix composed of collagen and a fibrin based blood clot. There are four basic interactions assumed in the model: fibroblasts orient the collagen matrix, fibroblasts produce and degrade collagen and fibrin and the matrix directs the fibroblasts and determines the speed of the cells. Several factors which influence the alignment of collagen are examined and related to current anti-scarring therapies using transforming growth factor ß. The most influential of these factors are cell speed and, more importantly for wound healing, the influx of fibroblasts from surrounding tissue

    Stress and large-scale spatial structures in dense, driven granular flows

    Full text link
    We study the appearance of large-scale dynamical heterogeneities in a simplified model of a driven, dissipative granular system. Simulations of steady-state gravity-driven flows of inelastically colliding hard disks show the formation of large-scale linear structures of particles with a high collision frequency. These chains can be shown to carry much of the collisional stress in the system due to a dynamical correlation that develops between the momentum transfer and time between collisions in these "frequently-colliding" particles. The lifetime of these dynamical stress heterogeneities is seen to grow as the flow velocity decreases towards jamming, leading to slowly decaying stress correlations reminiscent of the slow dynamics observed in supercooled liquids.Comment: 8 pages, 6 figure

    On a model mechanism for the spatial patterning of teeth primordia in the Alligator

    Get PDF
    We propose a model mechanism for the initiation and spatial positioning of teeth primordia in the alligator,Alligator mississippiensis. Detailed embryological studies by Westergaard & Ferguson (1986, 1987, 1990) show that jaw growth plays a crucial role in the developmental patterning of the tooth initiation process. Based on biological data we develop a reaction-diffusion mechanism, which crucially includes domain growth. The model can reproduce the spatial pattern development of the first seven teeth primordia in the lower half jaw ofA. mississippiensis. The results for the precise spatio-temporal sequence compare well with detailed developmental experiments

    Structural templating as a route to improved photovoltaic performance in copper phthalocyanine/fullerene (C60) heterojunctions

    Get PDF
    We have developed a method to improve the short circuit current density in copper phthalocyanine (CuPc)/fullerene (C60) organic solar cells by ~60% by modifying the CuPc crystal orientation through use of a molecular interlayer to maximize charge transport in the direction between the two electrodes. Powder x-ray diffraction and electronic absorption spectroscopy show that a thin 3,4,9,10-perylenetetracarboxylic dianhydride interlayer before CuPc growth templates the CuPc film structure, forcing the molecules to lie flat with respect to the substrate surface, although the intrastack orientation is unaffected. This modified stacking configuration facilitates charge transport and improves charge collection

    Spin gating electrical current

    Full text link
    We use an aluminium single electron transistor with a magnetic gate to directly quantify the chemical potential anisotropy of GaMnAs materials. Uniaxial and cubic contributions to the chemical potential anisotropy are determined from field rotation experiments. In performing magnetic field sweeps we observe additional isotropic magnetic field dependence of the chemical potential which shows a non-monotonic behavior. The observed effects are explained by calculations based on the kâ‹…p\mathbf{k}\cdot\mathbf{p} kinetic exchange model of ferromagnetism in GaMnAs. Our device inverts the conventional approach for constructing spin transistors: instead of spin-transport controlled by ordinary gates we spin-gate ordinary charge transport.Comment: 5 pages, 4 figure

    Searching for additional heating - [OII] emission in the diffuse ionized gas of NGC891, NGC4631 and NGC3079

    Get PDF
    We present spectroscopic data of ionized gas in the disk--halo regions of three edge-on galaxies, NGC 891, NGC 4631 and NGC 3079, covering a wavelength range from [\ion{O}{2}] λ\lambda3727\AA to [\ion{S}{2}] λ\lambda6716.4\AA. The inclusion of the [\ion{O}{2}] emission provides new constraints on the properties of the diffuse ionized gas (DIG), in particular, the origin of the observed spatial variations in the line intensity ratios. We used three different methods to derive electron temperatures, abundances and ionization fractions along the slit. The increase in the [\ion{O}{2}]/Hα\alpha line ratio towards the halo in all three galaxies requires an increase either in electron temperature or in oxygen abundance. Keeping the oxygen abundance constant yields the most reasonable results for temperature, abundances, and ionization fractions. Since a constant oxygen abundance seems to require an increase in temperature towards the halo, we conclude that gradients in the electron temperature play a significant role in the observed variations in the optical line ratios from extraplanar DIG in these three spiral galaxies.Comment: 43 pages, 29 figure
    • …
    corecore