225 research outputs found
Constraints, Histones, and the 30 Nanometer Spiral
We investigate the mechanical stability of a segment of DNA wrapped around a
histone in the nucleosome configuration. The assumption underlying this
investigation is that the proper model for this packaging arrangement is that
of an elastic rod that is free to twist and that writhes subject to mechanical
constraints. We find that the number of constraints required to stabilize the
nuclesome configuration is determined by the length of the segment, the number
of times the DNA wraps around the histone spool, and the specific constraints
utilized. While it can be shown that four constraints suffice, in principle, to
insure stability of the nucleosome, a proper choice must be made to guarantee
the effectiveness of this minimal number. The optimal choice of constraints
appears to bear a relation to the existence of a spiral ridge on the surface of
the histone octamer. The particular configuration that we investigate is
related to the 30 nanometer spiral, a higher-order organization of DNA in
chromatin.Comment: ReVTeX, 15 pages, 18 figure
On a classical spectral optimization problem in linear elasticity
We consider a classical shape optimization problem for the eigenvalues of
elliptic operators with homogeneous boundary conditions on domains in the
-dimensional Euclidean space. We survey recent results concerning the
analytic dependence of the elementary symmetric functions of the eigenvalues
upon domain perturbation and the role of balls as critical points of such
functions subject to volume constraint. Our discussion concerns Dirichlet and
buckling-type problems for polyharmonic operators, the Neumann and the
intermediate problems for the biharmonic operator, the Lam\'{e} and the
Reissner-Mindlin systems.Comment: To appear in the proceedings of the workshop `New Trends in Shape
Optimization', Friedrich-Alexander Universit\"{a}t Erlangen-Nuremberg, 23-27
September 201
Detection of K-Ras mutations in tumour samples of patients with non-small cell lung cancer using PNA-mediated PCR clamping
Non-small cell lung cancers (NSCLC), in particular adenocarcinoma, are often mixed with normal cells. Therefore, low sensitivity of direct sequencing used for K-Ras mutation analysis could be inadequate in some cases. Our study focused on the possibility to increase the detection of K-Ras mutations in cases of low tumour cellularity. Besides direct sequencing, we used wild-type hybridisation probes and peptide-nucleic-acid (PNA)-mediated PCR clamping to detect mutations at codons 12 and 13, in 114 routine consecutive NSCLC frozen surgical tumours untreated by targeted drugs. The sensitivity of the analysis without or with PNA was 10 and 1% of tumour DNA, respectively. Direct sequencing revealed K-Ras mutations in 11 out of 114 tumours (10%). Using PNA-mediated PCR clamping, 10 additional cases of K-Ras mutations were detected (21 out of 114, 18%, P<0.005), among which five in samples with low tumour cellularity. In adenocarcinoma, K-Ras mutation frequency increased from 7 out of 55 (13%) by direct sequencing to 15 out of 55 (27%) by clamped-PCR (P<0.005). K-Ras mutations detected by these sensitive techniques lost its prognostic value. In conclusion, a rapid and sensitive PCR-clamping test avoiding macro or micro dissection could be proposed in routine analysis especially for NSCLC samples with low percentage of tumour cells such as bronchial biopsies or after neoadjuvant chemotherapy
Apoptotic HPV Positive Cancer Cells Exhibit Transforming Properties
Previous studies have shown that DNA can be transferred from dying engineered cells to neighboring cells through the phagocytosis of apoptotic bodies, which leads to cellular transformation. Here, we provide evidence of an uptake of apoptotic-derived cervical cancer cells by human mesenchymal cells. Interestingly, HeLa (HPV 18+) or Ca Ski (HPV16+) cells, harboring integrated high-risk HPV DNA but not C-33 A cells (HPV-), were able to transform the recipient cells. Human primary fibroblasts engulfed the apoptotic bodies effectively within 30 minutes after co-cultivation. This mechanism is active and involves the actin cytoskeleton. In situ hybridization of transformed fibroblasts revealed the presence of HPV DNA in the nucleus of a subset of phagocytosing cells. These cells expressed the HPV16/18 E6 gene, which contributes to the disruption of the p53/p21 pathway, and the cells exhibited a tumorigenic phenotype, including an increased proliferation rate, polyploidy and anchorage independence growth. Such horizontal transfer of viral oncogenes to surrounding cells that lack receptors for HPV could facilitate the persistence of the virus, the main risk factor for cervical cancer development. This process might contribute to HPV-associated disease progression in vivo
In Vivo Chromatin Organization of Mouse Rod Photoreceptors Correlates with Histone Modifications
BACKGROUND: The folding of genetic information into chromatin plays important regulatory roles in many nuclear processes and particularly in gene transcription. Post translational histone modifications are associated with specific chromatin condensation states and with distinct transcriptional activities. The peculiar chromatin organization of rod photoreceptor nuclei, with a large central domain of condensed chromatin surrounded by a thin border of extended chromatin was used as a model to correlate in vivo chromatin structure, histone modifications and transcriptional activity. METHODOLOGY: We investigated the functional relationships between chromatin compaction, distribution of histone modifications and location of RNA polymerase II in intact murine rod photoreceptors using cryo-preparation methods, electron tomography and immunogold labeling. Our results show that the characteristic central heterochromatin of rod nuclei is organized into concentric domains characterized by a progressive loosening of the chromatin architecture from inside towards outside and by specific combinations of silencing histone marks. The peripheral heterochromatin is formed by closely packed 30 nm fibers as revealed by a characteristic optical diffraction signal. Unexpectedly, the still highly condensed most external heterochromatin domain contains acetylated histones, which are usually associated with active transcription and decondensed chromatin. Histone acetylation is thus not sufficient in vivo for complete chromatin decondensation. The euchromatin domain contains several degrees of chromatin compaction and the histone tails are hyperacetylated, enriched in H3K4 monomethylation and hypo trimethylated on H3K9, H3K27 and H4K20. The transcriptionally active RNA polymerases II molecules are confined in the euchromatin domain and are preferentially located at the vicinity of the interface with heterochromatin. CONCLUSIONS: Our results show that transcription is located in the most decondensed and highly acetylated chromatin regions, but since acetylation is found associated with compact chromatin it is not sufficient to decondense chromatin in vivo. We also show that a combination of histone marks defines distinct concentric heterochromatin domains
Commandabilité d'un système dynamique linéaire
Guérin J.-P., Lamrani B., Oudet B. A. Commandabilité d'un système dynamique linéaire. In: Revue économique, volume 26, n°5, 1975. pp. 839-847
- …