85 research outputs found

    Vaak scrapieresistentie bij Nederlandse Toggenburgers

    Get PDF
    Zeldzame Nederlandse rassen zijn niet alleen onderdeel van ons cultureel erfgoed, maar hebben soms ook een verrassende genetische variant. Zo is sinds een paar jaar bekend dat er een allel bestaat dat bescherming biedt tegen scrapie. In onderzoek van Wageningen UR met de geitensector blijkt dat het relatief kleine ras de Nederlandse Toggenburger veel dieren kent met het scrapieresistentie allel

    Estimating genetic diversity across the neutral genome with the use of dense marker maps

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the advent of high throughput DNA typing, dense marker maps have become available to investigate genetic diversity on specific regions of the genome. The aim of this paper was to compare two marker based estimates of the genetic diversity in specific genomic regions lying in between markers: IBD-based genetic diversity and heterozygosity.</p> <p>Methods</p> <p>A computer simulated population was set up with individuals containing a single 1-Morgan chromosome and 1665 SNP markers and from this one, an additional population was produced with a lower marker density i.e. 166 SNP markers. For each marker interval based on adjacent markers, the genetic diversity was estimated either by IBD probabilities or heterozygosity. Estimates were compared to each other and to the true genetic diversity. The latter was calculated for a marker in the middle of each marker interval that was not used to estimate genetic diversity.</p> <p>Results</p> <p>The simulated population had an average minor allele frequency of 0.28 and an LD (r<sup>2</sup>) of 0.26, comparable to those of real livestock populations. Genetic diversities estimated by IBD probabilities and by heterozygosity were positively correlated, and correlations with the true genetic diversity were quite similar for the simulated population with a high marker density, both for specific regions (r = 0.19-0.20) and large regions (r = 0.61-0.64) over the genome. For the population with a lower marker density, the correlation with the true genetic diversity turned out to be higher for the IBD-based genetic diversity.</p> <p>Conclusions</p> <p>Genetic diversities of ungenotyped regions of the genome (i.e. between markers) estimated by IBD-based methods and heterozygosity give similar results for the simulated population with a high marker density. However, for a population with a lower marker density, the IBD-based method gives a better prediction, since variation and recombination between markers are missed with heterozygosity.</p

    Microsatellite diversity of the Nordic type of goats in relation to breed conservation: how relevant is pure ancestry?

    Get PDF
    In the last decades, several endangered breeds of livestock species have been re-established effectively. However, the successful revival of the Dutch and Danish Landrace goats involved crossing with exotic breeds and the ancestry of the current populations is therefore not clear. We have generated genotypes for 27 FAO-recommended microsatellites of these landraces and three phenotypically similar Nordic-type landraces and compared these breeds with central European, Mediterranean and south-west Asian goats. We found decreasing levels of genetic diversity with increasing distance from the south-west Asian domestication site with a south-east-to-north-west cline that is clearly steeper than the Mediterranean east-to-west cline. In terms of genetic diversity, the Dutch Landrace comes next to the isolated Icelandic breed, which has an extremely low diversity. The Norwegian coastal goat and the Finnish and Icelandic landraces are clearly related. It appears that by a combination of mixed origin and a population bottleneck, the Dutch and Danish Land-races are separated from the other breeds. However, the current Dutch and Danish populations with the multicoloured and long-horned appearance effectively substitute for the original breed, illustrating that for conservation of cultural heritage, the phenotype of a breed is more relevant than pure ancestry and the genetic diversity of the original breed. More in general, we propose that for conservation, the retention of genetic diversity of an original breed and of the visual phenotype by which the breed is recognized and defined needs to be considered separately

    Developmental programming: the role of growth hormone

    Get PDF
    Developmental programming of the fetus has consequences for physiologic responses in the offspring as an adult and, more recently, is implicated in the expression of altered phenotypes of future generations. Some phenotypes, such as fertility, bone strength, and adiposity are highly relevant to food animal production and in utero factors that impinge on those traits are vital to understand. A key systemic regulatory hormone is growth hormone (GH), which has a developmental role in virtually all tissues and organs. This review catalogs the impact of GH on tissue programming and how perturbations early in development influence GH function

    The use of genomic information for the conservation of animal genetic diversity

    No full text
    The conservation of genetic diversity, both among and within breeds, is a costly process. Therefore, choices between breeds and animals within breeds are unavoidable, either for conservation in vitro (gene banks) or in vivo (maintaining small populations alive). Nowadays, genomic information on breeds and individual animals is the standard for the choices to be made in conservation. Genomics may accurately measure the genetic distances among breeds and the relationships among animals within breeds. Homozygosity at loci and at parts of chromosomes is used to measure inbreed-ing. In addition, genomics can be used to detect potentially valuable rare alleles and haplotypes, their carriers in these breeds and can facilitate in vivo or in vitro conservations of these genomic regions

    Opportunities of Genomics for the Use of Semen Cryo-Conserved in Gene Banks

    No full text
    Shortly after the introduction of cryo-conserved semen in the main farm animal species, gene banks were founded. Safeguarding farm animal genetic diversity for future use was and is the main objective. A sampling of sires was based on their pedigree and phenotypic information. Nowadays, DNA information from cryo-conserved sires and from animals in the living populations has become available. The combination of their DNA information can be used to realize three opportunities: 1) to make the gene bank a more complete archive of genetic diversity, 2) to determine the history of the genetic diversity from the living populations, and 3) to improve the performance and genetic diversity of living populations. These three opportunities for the use of gene bank sires in the genomic era are outlined in this study, and relevant recent literature is summarized to illustrate the great value of a gene bank as an archive of genetic diversity
    corecore