201 research outputs found

    Large-area single-mode photonic bandgap vcsels

    Get PDF

    Integration of cell of origin into the clinical CNS International Prognostic Index improves CNS relapse prediction in DLBCL

    Get PDF
    Central nervous system (CNS) relapse carries a poor prognosis in diffuse large B-cell lymphoma (DLBCL). Integrating biomarkers into the CNS-International Prognostic Index (CNS-IPI) risk model may improve identification of patients at high risk for developing secondary CNS disease. CNS relapse was analyzed in 1418 DLBCL patients treated with obinutuzumab or rituximab plus cyclophosphamide, doxorubicin, vincristine, prednisone chemotherapy in the phase 3 GOYA study. Cell of origin (COO) was assessed using gene-expression profiling. BCL2 and MYC protein expression was analyzed by immunohistochemistry. The impact of CNS-IPI, COO, and BCL2/MYC dual-expression status on CNS relapse was assessed using a multivariate Cox regression model (data available in n = 1418, n = 933, and n = 688, respectively). High CNS-IPI score (hazard ratio [HR], 4.0; 95% confidence interval [CI], 1.3-12.3; P = .02) and activated B-cell\u2012like (ABC) (HR, 5.2; 95% CI, 2.1-12.9; P = .0004) or unclassified COO subtypes (HR, 4.2; 95% CI, 1.5-11.7; P = .006) were independently associated with CNS relapse. BCL2/MYC dual-expression status did not impact CNS relapse risk. Three risk subgroups were identified based on the presence of high CNS-IPI score and/or ABC/unclassified COO (CNS-IPI-C model): low risk (no risk factors, n = 450 [48.2%]), intermediate risk (1 factor, n = 408 [43.7%]), and high risk (both factors, n = 75 [8.0%]). Two-year CNS relapse rates were 0.5%, 4.4%, and 15.2% in the respective risk subgroups. Combining high CNS-IPI and ABC/unclassified COO improved CNS relapse prediction and identified a patient subgroup at high risk for developing CNS relapse. The study was registered at www.clinicaltrials.gov as #NCT01287741

    Evaluating rehabilitation following lumbar fusion surgery (REFS): study protocol for a randomised controlled trial

    Get PDF
    BACKGROUND: The rate of lumbar fusion surgery (LFS) is increasing. Clinical recovery often lags technical outcome. Approximately 40% of patients undergoing LFS rate themselves as symptomatically unchanged or worse following surgery. There is little research describing rehabilitation following LFS with no clear consensus as to what constitutes the optimum strategy. It is important to develop appropriate rehabilitation strategies to help patients manage pain and recover lost function following LFS. METHODS/DESIGN: The study design is a randomised controlled feasibility trial exploring the feasibility of providing a complex multi-method rehabilitation intervention 3 months following LFS. The rehabilitation protocol that we have developed involves small participant groups of therapist led structured education utilising principles of cognitive behavioral therapy (CBT), progressive, individualised exercise and peer support. Participants will be randomly allocated to either usual care (UC) or the rehabilitation group (RG). We will recruit 50 subjects, planning to undergo LFS, over 30 months. Following LFS all participants will experience normal care for the first 3 months. Subsequent to a satisfactory 3 month surgical review they will commence their allocated post-operative treatment (RG or UC). Data collection will occur at baseline (pre-operatively), 3, 6 and 12 months post-operatively. Primary outcomes will include an assessment of feasibility factors (including recruitment and compliance). Secondary outcomes will evaluate the acceptability and characteristics of a limited cluster of quantitative measures including the Oswestry Disability Index (ODI) and an aggregated assessment of physical function (walking 50 yards, ascend/descend a flight of stairs). A nested qualitative study will evaluate participants' experiences. DISCUSSION: This study will evaluate the feasibility of providing complex, structured rehabilitation in small groups 3 months following technically successful LFS. We will identify strengths and weakness of the proposed protocol and the usefulness and characteristics of the planned outcome measures. This will help shape the development of rehabilitation strategies and inform future work aimed at evaluating clinical efficacy. TRIAL REGISTRATION: ISRCTN60891364, 10/07/2014

    Differential regulation of NF-ÎșB activation and function by topoisomerase II inhibitors

    Get PDF
    BACKGROUND: While many common chemotherapeutic drugs and other inducers of DNA-damage result in both NF-ÎșB nuclear translocation and DNA-binding, we have previously observed that, depending on the precise stimulus, there is great diversity of the function of NF-ÎșB. In particular, we found that treatment of U-2 OS osteosarcoma cells with the anthracycine daunorubicin or with ultraviolet (UV-C) light resulted in a form of NF-ÎșB that repressed rather than induced NF-ÎșB reporter plasmids and the expression of specific anti-apoptotic genes. Anthracyclines such as daunorubicin can induce DNA-damage though inhibiting topoisomerase II, intercalating with DNA and undergoing redox cycling to produce oxygen free radicals. In this study we have investigated other anthracyclines, doxorubicin and aclarubicin, as well as the anthracenedione mitoxantrone together with the topoisomerase II inhibitor ICRF-193, which all possess differing characteristics, to determine which of these features is specifically required to induce both NF-ÎșB DNA-binding and transcriptional repression in U-2 OS cells. RESULTS: The use of mitoxantrone, which does not undergo redox cycling, and the reducing agent epigallocatechingallate (EGCG) demonstrated that oxygen free radical production is not required for induction of NF-ÎșB DNA-binding and transcriptional repression by these agents and UV-C. In addition, the use of aclarubicin, which does not directly inhibit topoisomerase II and ICRF-193, which inhibits topoisomerase II but does not intercalate into DNA, demonstrated that topoisomerase II inhibition is not sufficient to induce the repressor form of NF-ÎșB. CONCLUSION: Induction of NF-ÎșB DNA-binding and transcriptional repression by topoisomerase II inhibitors was found to correlate with an ability to intercalate into DNA. Although data from our and other laboratories indicates that topoisomerase II inhibition and oxygen free radicals do regulate NF-ÎșB, they are not required for the particular ability of NF-ÎșB to repress rather than activate transcription. Together with our previous data, these results demonstrate that the nature of the NF-ÎșB response is context dependent. In a clinical setting such effects could profoundly influence the response to chemotherapy and suggest that new methods of analyzing NF-ÎșB function could have both diagnostic and prognostic value

    Two Nuclear Localization Signals in USP1 Mediate Nuclear Import of the USP1/UAF1 Complex

    Get PDF
    The human deubiquitinase USP1 plays important roles in cancer-related processes, such as the DNA damage response, and the maintenance of the undifferentiated state of osteosarcoma cells. USP1 deubiquitinase activity is critically regulated by its interaction with the WD40 repeat-containing protein UAF1. Inhibiting the function of the USP1/UAF1 complex sensitizes cancer cells to chemotherapy, suggesting that this complex is a relevant anticancer target. Intriguingly, whereas UAF1 has been reported to locate in the cytoplasm, USP1 is a nuclear protein, although the sequence motifs that mediate its nuclear import have not been functionally characterized. Here, we identify two nuclear localization signals (NLSs) in USP1 and show that these NLSs mediate the nuclear import of the USP1/UAF1 complex. Using a cellular relocation assay based on these results, we map the UAF1-binding site to a highly conserved 100 amino acid motif in USP1. Our data support a model in which USP1 and UAF1 form a complex in the cytoplasm that subsequently translocates to the nucleus through import mediated by USP1 NLSs. Importantly, our findings have practical implications for the development of USP1-directed therapies. First, the UAF1-interacting region of USP1 identified here might be targeted to disrupt the USP1/UAF1 interaction with therapeutic purposes. On the other hand, we describe a cellular relocation assay that can be easily implemented in a high throughput setting to search for drugs that may dissociate the USP1/UAF1 complex

    Interactions between genes involved in the antioxidant defence system and breast cancer risk

    Get PDF
    The aim of the study is to examine the association between multilocus genotypes across 10 genes encoding proteins in the antioxidant defence system and breast cancer. The 10 genes are SOD1, SOD2, GPX1, GPX4, GSR, CAT, TXN, TXN2, TXNRD1 and TXNRD2. In all, 2271 cases and 2280 controls were used to examine gene–gene interactions between 52 single nucleotide polymorphisms (SNPs) that are hypothesised to tag all common variants in the 10 genes. The statistical analysis is based on three methods: unconditional logistic regression, multifactor dimensionality reduction and hierarchical cluster analysis. We examined all two- and three-way combinations with unconditional logistic regression and multifactor dimensionality reduction, and used a global approach with all SNPs in the hierarchical cluster analysis. Single-locus studies of an association of genetic variants in the antioxidant defence genes and breast cancer have been contradictory and inconclusive. It is the first time, to our knowledge, the association between multilocus genotypes across genes coding for antioxidant defence enzymes and breast cancer is investigated. We found no evidence of an association with breast cancer with our multilocus approach. The search for two-way interactions gave experiment-wise significance levels of P=0.24 (TXN [t2715c] and TXNRD2 [g23524a]) and P=0.58 (GSR [c39396t] and TXNRD2 [a442g]), for the unconditional logistic regression and multifactor dimensionality reduction, respectively. The experiment-wise significance levels for the three-way interactions were P=0.94 (GPX4 [t2572c], TXN [t2715c] and TXNRD2 [g23524a]) and P=0.29 (GSR [c39396t], TXN [t2715c] and TXNRD2 [a442g]) for the unconditional logistic regression and multifactor dimensionality reduction, respectively. In the hierarchical cluster analysis neither the average across four rounds with replacement of missing values at random (P=0.12) nor a fifth round with more balanced proportion of missing values between cases and controls (P=0.17) was significant
    • 

    corecore