65 research outputs found

    Flow-test device fits into restricted access passages

    Get PDF
    Test device using a mandrel with a collapsible linkage assembly enables a fluid flow sensor to be properly positioned in a restricted passage by external manipulation. This device is applicable to the combustion chamber of a rocket motor

    eHealth technology in forensic mental healthcare:Recommendations for achieving benefits and overcoming barriers

    Get PDF
    While eHealth technologies such as web-based interventions, mobile apps, and virtual reality have the potential to be of added value for forensic mental healthcare, there is a gap between this potential and the current situation in practice. The goal of this study was to identify recommendations to bridge this gap. In total, 21 semi-structured interviews and 89 questionnaires were conducted in a Dutch forensic mental healthcare sample consisting of professionals, patients, and eHealth experts. Based on the broad range of identified recommendations, it can be concluded that attention should be paid to the characteristics of professionals, patients, technology, and the organization throughout the development, implementation and evaluation of eHealth

    Self-trapped electrons and holes in PbBr2_2 crystals

    Get PDF
    We have directly observed self-trapped electrons and holes in PbBr2_{2} crystals with electron-spin-resonance (ESR) technique. The self-trapped states are induced below 8 K by two-photon interband excitation with pulsed 120-fs-width laser light at 3.10 eV. Spin-Hamiltonian analyses of the ESR signals have revealed that the self-trapping electron centers are the dimer molecules of Pb2_23+^{3+} along the crystallographic a axis and the self-trapping hole centers are those of Br2_2^- with two possible configurations in the unit cell of the crystal. Thermal stability of the self-trapped electrons and holes suggests that both of them are related to the blue-green luminescence band at 2.55 eV coming from recombination of spatially separated electron-hole pairs.Comment: 8 pages (7 figures, 2 tables), ReVTEX; revised the text and figures 1, 4, and

    Self-trapped states and the related luminescence in PbCl2_2 crystals

    Get PDF
    We have comprehensively investigated localized states of photoinduced electron-hole pairs with electron-spin-resonance technique and photoluminescence (PL) in a wide temperature range of 5-200 K. At low temperatures below 70 K, holes localize on Pb2+^{2+} ions and form self-trapping hole centers of Pb3+^{3+}. The holes transfer to other trapping centers above 70 K. On the other hand, electrons localize on two Pb2+^{2+} ions at higher than 50 K and form self-trapping electron centers of Pb2_23+^{3+}. From the thermal stability of the localized states and PL, we clarify that blue-green PL band at 2.50 eV is closely related to the self-trapped holes.Comment: 8 pages (10 figures), ReVTEX; removal of one figure, Fig. 3 in the version

    Molecular pathways involved in the synergistic interaction of the PKCβ inhibitor enzastaurin with the antifolate pemetrexed in non-small cell lung cancer cells

    Get PDF
    Conventional regimens have limited impact against non-small cell lung cancer (NSCLC). Current research is focusing on multiple pathways as potential targets, and this study investigated molecular mechanisms underlying the combination of the PKCβ inhibitor enzastaurin with the multitargeted antifolate pemetrexed in the NSCLC cells SW1573 and A549. Pharmacologic interaction was studied using the combination-index method, while cell cycle, apoptosis induction, VEGF secretion and ERK1/2 and Akt phosphorylation were studied by flow cytometry and ELISAs. Reverse transcription–PCR, western blot and activity assays were performed to assess whether enzastaurin influenced thymidylate synthase (TS) and the expression of multiple targets involved in cancer signaling and cell cycle distribution. Enzastaurin-pemetrexed combination was highly synergistic and significantly increased apoptosis. Enzastaurin reduced both phosphoCdc25C, resulting in G2/M checkpoint abrogation and apoptosis induction in pemetrexed-damaged cells, and GSK3β and Akt phosphorylation, which was additionally reduced by drug combination (−58% in A549). Enzastaurin also significantly reduced pemetrexed-induced upregulation of TS expression, possibly through E2F-1 reduction, whereas the combination decreased TS in situ activity (>50% in both cell lines) and VEGF secretion. The effects of enzastaurin on signaling pathways involved in cell cycle control, apoptosis and angiogenesis, as well as on the expression of genes involved in pemetrexed activity provide a strong experimental basis to their evaluation as pharmacodynamic markers in clinical trials of enzastaurin-pemetrexed combination in NSCLC patients

    Ability of Group IVB metallocene polyethers containing dienestrol to arrest the growth of selected cancer cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Monomeric Group IVB (Ti, Zr and Hf) metallocenes represent a new class of antitumor compounds. There is literature on the general biological activities of some organotin compounds. Unfortunately, there is little information with respect to the molecular level activity of these organotin compounds. We recently started focusing on the anti-cancer activity of organotin polymers that we had made for other purposes and as part of our platinum anti-cancer effort.</p> <p>Methods</p> <p>For this study, we synthesized a new series of metallocene-containing compounds coupling the metallocene unit with dienestrol, a synthetic, nonsteroidal estrogen. This is part of our effort to couple known moieties that offer antitumor activity with biologically active units hoping to increase the biological activity of the combination. The materials were confirmed to be polymeric using light scattering photometry and the structural repeat unit was verified employing matrix assisted laser desorption ionization mass spectrometry and infrared spectroscopy results.</p> <p>Results</p> <p>The polymers demonstrated the ability to suppress the growth of a series of tumor cell lines originating from breast, colon, prostrate, and lung cancers at concentrations generally lower than those required for inhibition of cell growth by the commonly used antitumor drug cisplatin.</p> <p>Conclusion</p> <p>These drugs show great promise in vitro against a number of cancer cell lines and due to their polymeric nature will most likely be less toxic than currently used metal-containing drugs such as cisplatin. These drugs also offer several addition positive aspects. First, the reactants are commercially available so that additional synthetic steps are not needed. Second, synthesis of the polymer is rapid, occurring within about 15 seconds. Third, the interfacial synthetic system is already industrially employed in the synthesis of aromatic nylons and polycarbonates. Thus, the ability to synthesize large amounts of the drugs is straight forward.</p

    Economical and technical evaluation of energy storage systems

    No full text
    In the context of the increasing integration of non-dispatchable renewable energies, electricity storage is discussed as a possible solution to better match supply and demand. This paper evaluates innovative storage technologies for the stationary storage of electricity from intermittent renewable energy sources. The technologies analyzed using a multi-criteria methodology include Redox-Flow-Batteries (RFBs), thermal and compressed air storage (TACAS) and hydrogen storage via electrolysis (H2). An expert survey was conducted to assess the relative importance of criteria and derive weightings for the multi-criteria assessment based on the Analytic Hierarchy Process (AHP). The results of the multi-criteria analysis are presented. In the longer term, only those technologies will be applied that are economically feasible. Therefore, in addition, a detailed profitability analysis was carried out. As innovative electricity storage technologies need to compete with conventional electricity storage technologies and other flexibility options for energy supply, their economic profitability was also compared with conventional batteries, in particular with lead-acid and sodium-sulfur batteries. The results show that costs need to be substantially reduced for electricity storage technologies to be economically feasible in stationary storage applications. Thus, further research and development is needed to exploit the technical potentials for stationary electricity storage in the future
    corecore