22 research outputs found

    Experimental Resonance Enhanced Multiphoton Ionization (REMPI) studies of small molecules

    Get PDF
    Resonance enhanced multiphoton ionization (REMPI) utilizes tunable dye lasers to ionize an atom or molecule by first preparing an excited state by multiphoton absorption and then ionizing that state before it can decay. This process is highly selective with respect to both the initial and resonant intermediate states of the target, and it can be extremely sensitive. In addition, the products of the REMPI process can be detected as needed by analyzing the resulting electrons, ions, fluorescence, or by additional REMPI. This points to a number of exciting opportunities for both basic and applied science. On the applied side, REMPI has great potential as an ultrasensitive, highly selective detector for trace, reactive, or transient species. On the basic side, REMPI affords an unprecedented means of exploring excited state physics and chemistry at the quantum-state-specific level. An overview of current studies of excited molecular states is given to illustrate the principles and prospects of REMPI

    Deformations of Lie Algebras

    Get PDF

    Bi-frequency symmetry difference EIT - feasibility and limitations of application to stroke diagnosis

    Get PDF
    OBJECTIVE: Bi-Frequency Symmetry Difference (BFSD)-EIT can detect, localize and identify unilateral perturbations in symmetric scenes. Here, we test the viability and robustness of BFSD-EIT in stroke diagnosis. METHODS: A realistic 4-layer Finite Element Method (FEM) head model with and without bleed and clot lesions is developed. Performance is assessed with test parameters including: measurement noise, electrode placement errors, contact impedance errors, deviations in assumed tissue conductivity, deviations in assumed anatomy, and a frequency-dependent background. A final test is performed using ischemic patient data. Results are assessed using images and quantitative metrics. RESULTS: BFSD-EIT may be feasible for stroke diagnosis if a signal-to-noise ratio (SNR) of ≥60dB is achievable. Sensitivity to errors in electrode positioning is seen with a tolerance of only ±5mm, but a tolerance of up to ±30mm is possible if symmetry is maintained between symmetrically opposite partner electrodes. The technique is robust to errors in contact impedance and assumed tissue conductivity up to at least ±50%. Asymmetric internal anatomy affects performance but may be tolerable for tissues with frequency-dependent conductivity. Errors in assumed external geometry marginally affect performance. A frequency-dependent background does not affect performance with carefully chosen frequency points or use of multiple frequency points across a band. The Global Left-Hand Side (LHS) & Right-Hand Side (RHS) Mean Intensity metric is particularly robust to errors. CONCLUSION: BFSD-EIT is a promising technique for stroke diagnosis, provided parameters are within the tolerated ranges. SIGNIFICANCE: BFSD-EIT may prove an important step forward in imaging of static scenes such as stroke

    ChemInform Abstract: A General Route to 5-Substituted-2-furylacetic Acids: A Brief Synthesis of Plakorsin B.

    No full text
    3,4-Dihydroxy-5-alkynylcarboxylic acids, readily obtained by the addition of lithium acetylides to α-acetoxysuccinic anhydride followed by reduction and hydrolysis, undergo smooth silver(I)-catalysed 5-endo-dig cyclisations and in situ dehydration to give excellent overall yields of 5-substituted-2-furylacetic acids, including the natural metabolite plakorsin B
    corecore