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0. INTRODUCTION

The set of Lie algebra products on a fixed n-dimensional vector space V'
over a field F is the algebraic subset £, of the affine variety Hom(A%V, V)
consisting of alternating bilinear maps which satisfy the Jacobi identity. We
assume the field F is algebraically closed and has characteristic 0. In the
following, we refer to elements of %, as “Lie algebras.” The isomorphism
class of the Lie algebra ue %, is the orbit O(u) in %, under the following
GL(n, F)-action on %,:

(g-1)(x, yy=g(u(g 'x, g 'y)). (0.1)

We say that a Lie algebra p' is a degeneration of a Lie algebra u (or u
degenerates to u') if p’ is in the boundary of the orbit of O(u), i.e., in the
complement of O{u) in the Zariski closure of O(u). For example, let ¢ and
i’ be the 4-dimensional Lie algebras given by

uley, e;)=e; wiey, ex)=e3
uley, e;)=e, u'(e;, e;)=0 otherwise (0.2)
ple;, e;) =0 otherwise.
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For each nonzero element ¢ of F, let g,e GL(n, F) be diagonal with
diagonal entries (1, 1, 1, ¢). Then g, - u is given by

(g:-n)ey, e;)=ey
(g:-uley, ey)=re, (0.3)

(g, ule;e)=0 otherwise.

From the parameterization by re F\{0} of the subset g,-u of O(u), one
sees that every polynomial function vanishing on O(u) also vanishes on
the Lie algebra resulting from replacing ¢ with 0, ie., on y'. Therefore u’
belongs to the Zariski closure of O(u) and hence to the boundary of
O(p).

Degeneration of Lie algebras has been the focus of various research
projects in mathematics and in physics for more than thirty years. For
instance, Nijenhuis and Richardson studied the relationship between
cohomology and degeneration [147], Vergne studied the geometry of the
variety of nilpotent Lie algebras [16], Carles studied the geometry of the
variety %, of Lie algebras for small n [2], and Seeley has recently obtained
results on degenerations of nilpotent Lie algebras [15]. In the physics
literature, the concept of degeneration (referred to as “contraction” in
physics) first appeared 40 years ago {11].

The results in this paper were motivated by the following conjecture:

Conjecture. Every nilpotent Lie algebra of dimension two or more is
the degeneration of some other Lie algebra.

A Lie algebra p cannot be a degeneration of another Lie aigebra if
H*(u, u)=0 [14]. For example, if u is semisimple then H?*(y, u)=0, and
so a semisimple Lie algebra is not a degeneration of another Lie algebra.
Support for the Conjecture comes from the fact that a nilpotent Lie algebra
of dimension greater than 1 always has non-vanishing 2-cohomology [3].
A consequence of this conjecture would be that every nilpotent Lie algebra
of dimension greater than 1 is a degeneration of some non-nilpotent Lie
algebra. The conjecture fails for solvable Lie algebras; the non-abelian
2-dimensional Lie algebra is a solvable Lie algebra which is a degeneration
of no other Lie algebra.

Characterizing orbit closure as in [871, one sees that every degeneration
of a Lie algebra u to a Lie algebra u’ gives rise to a deformation of ¢'. Thus
the existence of degenerations to u implies the existence of non-trivial
deformations of u. In this paper, we construct “linear” deformations, i.e.,
deformations of a Lie algebra u of the form u + ny. Throughout the paper
we consider Lie algebras of dimension greater than or equal to 2. We show
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that the following Lie algebras (of dimension two or more) have non-trivial
deformations:

(1) any nilpotent Lie algebra of nilpotency class 1 or 2

(2) any graded nilpotent Lie algebra

(3) any free nilpotent Lie algebra

{4) any nilpotent Lie algebra with a codimension one ideal K which
satisfies (1), (2), or (3)

{5) any direct product of a nilpotent Lie algebra and a nontrivial
abelian Lie algebra

(6) any nilpotent Lie algebra with a codimension one ideal K such
that Der(K) contains a non-nilpotent element

(7) any nilpotent Lie algebra with a codimension one ideal K whose
center Z(K) is not contained in its derived subalgebra [ K, K]

(8) any nilpotent Lie algebra with a codimension 2 ideal H and a
codimension 1 ideal K containing H such that Cent,(H) is not contained
in H

(9) any solvable Lie algebra L of solvability length s with a codimen-
sion 1 ideal K and a derivation e Der(K) such that the sth derived
subspace of im é is nonzero

(10) any Lie algebra L with a codimension one ideal K such that the
center Z(K) of K is not contained in [ L, L] and Z(L) X is not contained
in [K, K].

Note that every solvable Lie algebra has a codimension one ideal, so these
conditions are not as restrictive as they might appear at first reading.
Which of these deformations correspond to degenerations remains an open
question.

1. CONSTRUCTION OF LINEAR DEFORMATIONS

For the purposes of this paper, we use Gerstenhaber’s definition of
deformation [7]:

1.1. Derinmmion.  If V' is a vector space over F and F((¢)) is the power
series field over F, let Vi, =V®, F((1)). If peHom(A?V, V) is a Lie
product on V, then u defines a Lie product on ¥V,,, by the natural
extension u(v® f, w® g)=pu(v, w)® fg. If u, is a Lie product on V),
such that

He=p+10 + 120+ - (1.1)
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with ¢, e Hom(A%V, V), then u, is a deformation of u. The deformation p,
is trivial if there is an automorphism of ¥y, of the form

g, =ld+1g, +1°g,+ - (1.2)

with g€ End(V’) such that g, (x, y)=g,(u(g, 'x, g, "))

A more general definition of deformation appears in [5], and it is under
this more general definition that one can realize every degeneration as a
deformation (see [6]). The realization of a degeneration as a deformation
is easily seen in the example given by (0.2) and (0.3). In the Lie product
given by (0.3), let “r” denote a variable instead of an element of the field
F; then (0.3) is the deformation of p’ given by u' + t(u— u').

For clarity and ease of notation, we will use either [ , ] or u to denote
the Lie product of a Lie algebra L. We use the standard definitions for Lie
algebra cohomology (see, for instance, [10]). For o, 1€ Hom(AV, V), we
use chc 7(a(x, y), z) to denote

t(o(x, y), z)+t(a(y, 2), x)+ 1(0(z, x), ¥).

Then pe Hom(A%V, V) is a Lie algebra if and only if

Y piplx, ¥),z)=0 forall x, y,zeV (1.3)

cyc

and e Hom(A%V, V) is in Z*(L, L) if and only if

Y ullx, p1. )+ Y [¥(x, y),z]1=0 forall x, y,zeV. (1.4)

cyc cyc

1.2. LEemMa. Let L be a Lie algebra with Lie product pe ¥,. The map
p+ 0y is a deformation of L if and only if  is a Lie algebra and
veZi L, L)

Proof. The map u+ nf is a Lie algebra over F((z)) if and only if

0=y (u+0))(u+1y)x, y),z)

cyc

S (e v), )+ Y lal ) z)]

cyc cye

= pululx, y), Z)+t[

cyc

+2Y Y((x, y), 2).

cyc
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The first summand is zero because p is a Lie algebra, the second term is
zero if and only if ¢ € Z%(L, L), and the last term is zero if and only if ¢
is a Lie algebra. |

1.3. LEMMA. Let L be a Lie algebra with Lie product pe ¥,. If u+ tyr is
a trivial deformation of L, then the bilinear map W is in B*(L, L).

Proof. If pu+ny is a trivial deformation of u, then there is an
automorphism g, of V., of the form (1.2) such that (u+ ty)(x, y)=
g.(u(g,; 'x, g7 'y)) (or equivalently, an automorphism g, of the form (1.2)
satisfying (u+ t¥)(x, y) =g, '(u(g,x, g,y))). Then for all x, yeV,

(u+np)x, y)y=g,;'(u(gx, g )
=g, "(ulx, y)+ilplx, g y)+p(gx, ¥)]

+ higher order terms

=pulx, y)+t[pulx, gy y)+u(gx, y)— g (ulx, ¥)]

+ higher order terms.

Comparing the terms of degree 1, we see that y is equal to the 2-coboun-
dary dg,. Therefore € B*(L, L). |

We introduce the following notation: for Y €.%, and xe V, ¥, is the
endomorphism of V given by y, (v) =y(x, v).

1.4. LEMMA. Let u+ 1y be a deformation of a nilpotent Lie algebra p. If
the Lie algebra o is not nilpotent, then the deformation pu+ tf is non-trivial,

Proof. Suppose that u+nf is a trivial deformation. From the
definition, it is easy to verify that the Lie algebra p+ sy (over F((1))) is
nilpotent. Because the highest order term of [(pu+ ), ]9 (») is t%y9(y), it
follows that i is a nilpotent endomorphism of V for every x € V. Therefore
the Lie algebra y is nilpotent, contradicting the hypothesis. |

Let K be a codimension one ideal of a (not necessarily nilpotent) Lie
algebra L. Applying Dixmier’s construction in {37] to our setting, one
obtains 2-cochains in C?(L, L) from 1-cochains in C'(X, K) as follows. Let
@€ C'(K, K) and choose x € L\K. Define g€ C*(L, L) by

¢(x, k)= (k) forall keK (L)
B(K, K) =0, '
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If L is a solvable Lie algebra, then it has a codimension 1 ideal, and so we
can always carry out this construction for solvable Lie algebras.

1.5. LeMMA. Let K be a codimension | ideal of a Lie algebra L with Lie
product p. If e Z' (K, K), then ¢ is a Lie algebra and ¢e Z*(L,L).
Consequently, u+ t¢ is a deformation of p.

Proof. Because L =K@ Fx and @(K, K)=0, it suffices to verify condi-

tions (1.3) and (1.4) on Kx Kx {x}. To verify that ¢ is a Lie algebra, we
consider

Y a(e(h k), x), hkek.

cyc

Because ¢(K, K)=0, each summand is zero and it follows that ¢ is a Lie
algebra. To verify that ¢ is a 2-cocycle, we establish that the following sum
is zero for all k, he K:

Y [@th k), x]+ Y @([h, k], x).
cyc cyce

After eliminating terms which drop out because @¢(K, K)=0, we have:

Lo(k x), h]1+ [o(x, h), k]1+@([h, k], x)
= —(o(k) h]1+ [o(h), k]1—o([h, k1),

which is zero because ¢ € Z'(K, K). Therefore ¢ is a 2-cocycle. |

2. LiE ALGEBRAS WITH NoN-TRIVIAL DEFORMATIONS

In this section, we use the construction described by (1.5) to define
deformations of Lie algebras.

2.1. THEOREM. Let L be a nilpotent Lie algebra with Lie product u
and let K be a codimension 1 ideal of L such that some element of
ZY(K, K)= Der(K) has a nonzero cigenvalue. Then L has a non-trivial
deformation.

Proof. Let @eZ'(K,K) such that ¢ has a nonzero eigenvalue.
Construct ¢ as in (1.5). It follows from Lemma 1.5 that pu+1p is a
deformation of L. From the construction of ¢ we see that an eigenvector
of ¢ is an eigenvector of @, of the same eigenvalue. Because ¢ has a
nonzero eigenvalue, ¢, is not nilpotent. Therefore the Lie algebra ¢ is



216 GRUNEWALD AND O’HALLORAN

not nilpotent. It follows from Lemma 1.4 that u+¢p is a non-trivial
deformation of u. |

In [12], Jacobson proved that, over a field of characteristic 0, a Lie
algebra with a nonsingular derivation is nilpotent. If the converse were
true, then Theorem 2.1 would provide non-trivial deformations for every
nilpotent Lie algebra. Unfortunately, the converse is false; Dixmier and
Lister have a counterexample [4]. We obtain Propositions 2.2 through 2.9
by establishing that certain types of Lie algebras have nonsingular
derivations.

2.2. PROPOSITION. Let L be a nilpotent Lie algebra with a codimension
one ideal K whose center Z(K) is not contained in [K, K. Then L has a
non-trivial deformation.

Proof. Let keZ(K)\[K,K]. Choose a linear transformation
¢: K— Z(K) such that ¢(k)=k and ¢([K, K])=0. When ¢ is regarded as
a linear transformation from K into K, it is easy to verify that ¢ is a
1-cocycle. Since the 1-cocycle ¢ has a nonzero eigenvalue, it follows from
Theorem 2.1 that L has a non-trivial deformation. J

2.3. PROPOSITION. If a nilpotent Lie algebra L has a codimension one
ideal K of nilpotency class 2, then L has a non-trivial deformation.

Proof. Let K=[K, K]@® W (vector space direct sum), and define
@eC (K, K) as follows:

elv+w)=2v4+w where ve[K, K] and we W.
Because [[K, K], K] = {0}, we see that p e Z'(K, K):
o([v,+wy, 02+ w])— [o(v +wi), va+tw ]+ [e(va+wy), 0 +w,]
=2[wy, wy]—[wy, wal+ [wy, wi] (because v, e Z(K))
=0.
Since ¢ is a nonsingular derivation of K| it follows from Theorem 2.1 that
L has a non-trivial deformation. |}
2.4. CoroLLARY. If L is a Lie algebra of nilpotency class 1 or 2, then L
has a non-trivial deformation.

Proof. 1If L is abelian (nilpotency class 1), then the conclusion follows
from Proposition 2.2. If L is of nilpotency class 2, then L has a codimen-
sion 1 ideal K of nilpotency class 2 or of nilpotency class 1. In the first case,
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the conclusion follows from Proposition 2.3. In the second case, the
conclusion follows from Proposition 2.2. |

A Lie algebra L is graded if there is a vector space decomposition
L=@®;_, V,such that, for e;e V', and ¢,e V,, we have [¢;, ¢;,]JeV,, ,.

2.5. PROPOSITION.  Every nilpotent Lie algebra with a graded ideal K of
codimension 1 has a non-trivial deformation.

Proof. We construct a nonsingular derivation ¢ of K as follows. If K is
graded by K=@_, V,, let 6: K— K be given by
d(e;) =lie, for each e,eV,.
We see that the endomorphism 4 is a derivation as follows:

[de;, e;]+ [e;, de;]1=ile,, 9/] + jle, ej] =(i+j)e;, ej]'

Because the vector [e;, ¢,] is in V, ,, it follows that (i+ j)[e;,,e;]=
d[e,, e;]. Therefore é is a nonsingular derivation of the ideal K. It follows
from Theorem 2.1 that the Lie algebra L has a non-trivial deformation. ||

Every graded solvable Lie algebra of dimension greater than 1 has a
homogeneous ideal of codimension 1. Furthermore, every free nilpotent
Lie algebra is graded (see [1, Chap.11.5] for definitions and results).
Consequently, we have the following corollaries:

2.6. CorOLLARY. Every graded nilpotent Lie algebra has a non-trivial
deformation.

2.7. COROLLARY. If a nilpotent Lie algebra L is free nilpotent or has
a codimension 1 ideal which is free nilpotent, then L has a non-trivial
deformation.

2.8. PROPOSITION. Let L be a nilpotent Lie algebra with a codimension 1
ideal K and a codimension 2 ideal H such that H< K and Cent(H)Y &€ H.
Then L has a non-trivial deformation.

Proof. By Theorem 2.1, it suffices to construct a derivation é of K
which has a nonzero eigenvalue. Let z € Cent (H)\ H. Since z ¢ H, we have
K=H® Fz. Define é: K— K as follows:

o(h+ Az)= Az
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The endomorphism ¢ is a derivation:

Loth) +2,2), hy+ 221+ [hy + 2,2, 3y + Ay 2) ]
=[liz, ha+ Ayz]+ [+ 4,2, 45z]
=0=0[h,+ Az, h,+4,z].

The vector z is an eigenvector of o with eigenvalue 1. By Theorem 2.1, the
derivation & defines a non-trivial deformation of L. |}

2.9. CorOLLARY. If L is a nilpotent Lie algebra, then LxF has a
non-trivial deformation, where F is the 1-dimensional abelian Lie algbra.

Proof. Let K be any codimension 1 ideal of L; then K x F is a codimen-
sion 1 ideal of L x F and Kx {0} is a codimension 2 ideal contained in
Kx F such that Centy, (Kx{0}) & Kx {0}. It follows from Proposi-
tion 2.8 that L x F has a non-trivial deformation. |

For any Lie algebra y define the multilinear map ', i = 1, as follows.
Let ' =y and let Y'(vy, . v; ) =YW vy, 0 0,), 0,4 4)

If s is a nilpotent Lie algebra of nilpotency class 2, then ™ =0.

2.10. PROPOSITION. Let L be a nilpotent Lie algebra of nilpotency class
m with Lie product u. If L has a codimension 1 ideal K and a derivation
o€ Der(K) such that 0™ #0, then L has a non-trivial deformation.

Proof. Let 5eDer(K), and choose k € K such that 6™(k)#0 and let ]
denote the 2-cochain defined as in (1.5). If the deformation y+ 16 is trivial,
then (p+ t6)™ =0. But the mth coefficient of (u+ 15)" is 6™ and

8™k, x, X, .y x) = 8™(k) #0,

contradicting the assumption that (u + 18)” = 0. Therefore the deformation
w+ td is non-trivial. J

Even though Dixmier’s construction appeared in the context of nilpotent
Lie algebras, it certainly applies to non-nilpotent Lie algebras. In the
following, we consider solvable Lie algebras and arbitrary Lie algebras
satisfying certain conditions.

For ue Hom(A%V, V), define u'?e Hom(® > ¥, V), i=0, as follows:

u)=v

L0, e 0300) = (P01 oy 02)y 024 s ey D))
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If u is a solvable Lie algebra, then u'” =0 for some i; let

sol(u) =max{i: u'?#0}.

2.11. PROPOSITION. Let L be a solvable Lie algebra with Lie product u.
If L has a codimension 1 ideal K and a derivation 6 € Der(K) such that
p(im 8, ..., im 8) #0, where s =sol(u), then L has a non-trivial deformation.

Proof. Let & be a derivation of K such that u*)(im 4, ..., im §) £0. We
prove that y+ ¢5 is a non-trivial deformation by showing that sol(u + 15)
1s strictly greater than sol(y).

For i >0, we have

20 -1

(#+t5 (i Z [(pll)

Jj=1
where (pj“' eHom(@? L, L). Since every codimension 1 ideal of a solvable
Lie algebra contains the derived ideal of the Lie algebra, we have
#(L, L) K. Also im é =im & < K; therefore im ¢!” = K for all i> 1 and for
all j. Because §(K, K) =0, we see that for /> 1 we have
(lu + tg)'i+ n (Uls ey UZ"I)

=(U+ ) (4 16)D (Uy, oy Do), (A 18)7 (Vi 4 (5 s Vpint))

= (14 10) (vy, oy 0, (A 18 (03 1y ey Divt)). 2.1)
Thus deg(u +£3_)“+ <2 deg(u+ 16)1). Since deg(u+15) =1, it follows
that deg(u + 1)+ < 2" From (2.1) we see that

i+ 1) _

0 (i)
Py

#((le la(Pvl X) l?l

Arguing inductively we see that im @4* " = u'(im 4, .., im 8):
In the case i=0 we have im ¢! =im § =im 4.
For i >0, we have

im @it Y =pu(im @\, im @)
=pu(p" " "im4, .., im &), p ~(im §, ..., im 3}))
(by induction)
— 4(im 6, .., im 6).
Because p“)(im 4, ..., im 8) #0, it follows that ¢i* ") 0 and hence
sol{(y + t6) = s + 1 > sol(p),

contradicting the assumption that g+ ¢4 is a trivial deformation. |
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2.12. PROPOSITION. Let L be a (not necessarily nilpotent) Lie algebra
with Lie product j such that L has a codimension one ideal K. If Z(K) is not
contained in [L, L] and Z(L)Y K is not contained in [ K, K], then L has a
non-trivial deformation.

Proof. Choose xe L\K, ke (Z(L)n K)\[K, K], and ye Z(K)\[L, L].
Write K as a direct sum H@® Fk where [K, K] < H. Choose ¢ e C'(K, K)
such that ¢(H)=0 and ¢(k)= y. Because im ¢ € Z(K) and ¢([ K, K])=0,
it follows that ¢ € Z'(K, K). Then by Lemma 1.5, u+ t¢ is a deformation
of u.

To establish that this deformation is non-trivial, we show that @ is not
a 2-coboundary. If there is a 1-cochain g e C'(L, L) with do = @, then

y= (ﬁ(.\', kl)= dO'(x, k1)= [.V, G(kl)] - [kh O'(X)] - 0( [X, kl])

Because ke Z(L), the last two terms are zero and it follows that
ve[L, L], a contradiction.
Therefore, by Lemma 1.3, g+ ¢ is a non-trivial deformation of u. 1

We have established that many classes of solvable Lie algebras have
non-trivial deformations. We see in the following propositions that the Lie
algebra p shares certain properties with the deformation u+ 15 we have
constructed.

2.13. PROPOSITION. Let L be a solvable Lie algebra with Lie product p
and let 6 € Der(K), where K is a codimension | ideal of L. Then u+1té is a
solvable Lie algebra and sol(p) <sol(u+ 1) <1+ sol(u).

Proof. In the proof of Proposition2.11, we established that
deg(u+15)7<2" 1, Let (u+15)”’=zf':: t’@!". Using induction on i, we

prove that im ¢{" <im u" " for all i, j. The case i=1 is trivial. From
(2.1), we have

(u+18) D (v, oy 02i11)

= (g4 1) (1), s V2), (A1) V(Wi (s s Vi)

2i -1 2i- !
=u ( Y vy, v2), Y U0 (000, U2:+1_)>

j=1 =1

5
=Yy t-"li Y @0y, e v2), @ (000 s e Uzt+l))]- 22)

j=1 pP+a=j
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From the induction hypothesis we have

imecimu ™" and  ime!’cimut").

It follows from (2.2) that

ime* V=3 uimey ime])
rry=i

cu(im g " im p )

=im p'. (2.3)

Let s=s_ol(y). Because u"“*"=0, we see that u+¢5 is solvable and
sol(u +10) < 1 +sol(u). Note that ¢y'=u'" for all i; since u*#0, it
follows that sol(u + 13) = sol(x). |

2.14. PROPOSITION. Let L be a nilpotent Lie algebra with Lie product p
and let 6eDer(K), where K is a codimension 1 ideal of L. Then u+ 16
is a solvable Lie algebra which is a nilpotent Lie algebra if and only if the
derivation o is a nilpotent endomorphism.

Proof. From Proposition 2.13, we know that u+ 5 is solvable. In the
proof of Theorem 2.1, we established that the deformation u + £ is not a
nilpotent Lie algebra if the endomorphism J is not nilpotent.

Suppose the endomorphism ¢ is nilpotent. Reversing the argument in the
proof of Theorem 2.1, we see that the Lie algebra J is nilpotent. For any
nilpotent Lie algebra i on a finite-dimensional vector space V, if Wis a
nonzero subspace of V, then dim (¥, W) < dim W (otherwise ¥ would not
be nilpotent). Since the coefficients of (u+ 15)" are sums of i successive
products, where each product is either u or é (both nilpotent Lie algebras),
we conclude that the images of the coefficients of (i + t5)" have dimension
less than or equal to dim L —i. It follows that (u+ t5)“™%Z=0. |

Even if a nilpotent Lie algebra has a non-trivial deformation (and we
conjecture that all nilpotent Lie algebras have non-trivial deformations), it
does not necessarily have a non-trivial nilpotent deformation. The 3-dimen-
sional Heisenberg Lie algebra has no non-trivial nilpotent deformations.
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3. DEFORMATIONS AND DEGENERATIONS
Consider the 3-dimensional solvable Lie algebra y given by

[er,e;]=e,

{e..e,1=0 otherwise.
Let K= (e,,¢,» and let 6: K — K be given by

d(e,)=0
o(e;) = es.

The resulting deformation u + 16 is given by

(n+13)ey, e))=e,
(L+18)(ey, e3)=te,
(u+13)(e,, ¢;)=0 otherwise.

From [13], we know that y+«d and u+ 6 are isomorphic if and only
if af=1; ie, pu+2ad and u+ P are in different orbits unless aff=1.
Therefore the deformation p + ¢ does not produce a degeneration.

On the other hand, the example (0.3) in the Introduction is a deforma-
tion which does realize a degeneration. Moreover, every degeneration of a
nilpotent Lie algebra of dimension less than 6 can be realized by a linear
deformation (simply examine every case presented in [9]). Which of the
deformations constructed in Section 2 represent degenerations? Can all
degenerations be represented by linear deformations? In this section we
present examples which demonstrate various aspects of these questions.

A filtration on a Lie algebra L is a nested sequence of subspaces of L

2V _,2V_ 2V 2V, 2 -

such that (¥, V,)= V, ;. For each filtration on L there is an associated
graded Lie algebra W (of the same dimension as L) defined as follows. Let
W=@®,.,V,/V,. and define a Lie product ¢ on W by

p(x, V)=[x,yle Vs+t/Vx+r+l for xeV,and yeV,.

In [9], we observed that every filtration of a Lie algebra p produces a
degeneration from u to the associated graded Lie algebra ¢. All of the
degenerations considered in [9] are given by filtrations. It is unknown
whether or not every degeneration arises from a filtration. All of the
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examples of degeneration of Lie algebras of which we are aware are given
by filtrations and can be realized by linear deformations. We conjecture
that every degeneration given by a filtration can be realized by a linear
deformation. The following proposition lends support to this conjecture:

3.1. ProposITION. Let L be a Lie algebra with Lie product p which is
filtered in the following manner:

L=V,2V,2V,=0 [V,V]<V,,,

Then the degeneration to the associated graded Lie algebra can be realized
by a linear deformation.

Proof. Choose a complementary subspace Y to V, in ¥V, so that
Vo=V,®7Y. Let n; be the projection map onto the ith summand, i=1, 2.
Via the natural correspondence between Y and ¥V,/V, we may realize the
associated graded Lie algebra product y” as a product on ¥V, as follows:

Wiy ya)=mn(ulyr, y2))  for y, €Y
By, wy=p(y, w) for yeY,weV,

wiwy, wy)=pw, wy)=0 for wy,w,eV,.
Then u=u'+, where

Wy, ya)=muly, ) for y(, y2eY
Yy, w)=y(w,,w,y)=0 for yeY, w,w,elV,.

The map  is a Lie algebra because y((V,. V), V) =0. The fact that
W e Z*(u, 1) follows from straightforward computation using the fact that
u is a Lie algebra. It follows from Lemma 1.2 that g’ + nf is a deformation
of w'. |

By constructing non-trivial deformations for large classes of nilpotent Lie
algebras, we have produced evidence to support the conjecture that every
nilpotent Lie algebra has a non-trivial deformation. If so, is every nilpotent
Lie algebra the degeneration of some other Lie algebra? We invite the
reader to explore the open quetions we have presented here.
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