112,269 research outputs found
On the development of noise-producing large-scale wavelike eddies in a turbulent jet
The development of large-scale wavelike eddies in a two-dimensional turbulent jet was studied. The basic mean flow develops from a mixing region type with an initial specified boundary layer thickness into a fully developed jet. The role of the varicose and sinuous modes as these develop in a growing mean flow is brought out. In general, it was found, for a given frequency parameter, the varicose mode has a shorter streamwise lifetime than the sinuous mode. The latter, for lower frequency ranges, persists past the end of the potential core only to be subject to dissolution by the more enhanced fine scale turbulent activity in that region
An efficient ant colony system based on receding horizon control for the aircraft arrival sequencing and scheduling problem
The aircraft arrival sequencing and scheduling (ASS) problem is a salient problem in air traffic control (ATC), which proves to be nondeterministic polynomial (NP) hard. This paper formulates the ASS problem in the form of a permutation problem and proposes a new solution framework that makes the first attempt at using an ant colony system (ACS) algorithm based on the receding horizon control (RHC) to solve it. The resultant RHC-improved ACS algorithm for the ASS problem (termed the RHC-ACS-ASS algorithm) is robust, effective, and efficient, not only due to that the ACS algorithm has a strong global search ability and has been proven to be suitable for these kinds of NP-hard problems but also due to that the RHC technique can divide the problem with receding time windows to reduce the computational burden and enhance the solution's quality. The RHC-ACS-ASS algorithm is extensively tested on the cases from the literatures and the cases randomly generated. Comprehensive investigations are also made for the evaluation of the influences of ACS and RHC parameters on the performance of the algorithm. Moreover, the proposed algorithm is further enhanced by using a two-opt exchange heuristic local search. Experimental results verify that the proposed RHC-ACS-ASS algorithm generally outperforms ordinary ACS without using the RHC technique and genetic algorithms (GAs) in solving the ASS problems and offers high robustness, effectiveness, and efficienc
SamACO: variable sampling ant colony optimization algorithm for continuous optimization
An ant colony optimization (ACO) algorithm offers
algorithmic techniques for optimization by simulating the foraging behavior of a group of ants to perform incremental solution
constructions and to realize a pheromone laying-and-following
mechanism. Although ACO is first designed for solving discrete
(combinatorial) optimization problems, the ACO procedure is
also applicable to continuous optimization. This paper presents
a new way of extending ACO to solving continuous optimization
problems by focusing on continuous variable sampling as a key
to transforming ACO from discrete optimization to continuous
optimization. The proposed SamACO algorithm consists of three
major steps, i.e., the generation of candidate variable values for
selection, the ants’ solution construction, and the pheromone
update process. The distinct characteristics of SamACO are the
cooperation of a novel sampling method for discretizing the
continuous search space and an efficient incremental solution
construction method based on the sampled values. The performance
of SamACO is tested using continuous numerical functions
with unimodal and multimodal features. Compared with some
state-of-the-art algorithms, including traditional ant-based algorithms
and representative computational intelligence algorithms
for continuous optimization, the performance of SamACO is seen
competitive and promising
Recommended from our members
'BioNessie(G) - a grid enabled biochemical networks simulation environment
The simulation of biochemical networks provides insight and
understanding about the underlying biochemical processes and pathways
used by cells and organisms. BioNessie is a biochemical network simulator
which has been developed at the University of Glasgow. This paper
describes the simulator and focuses in particular on how it has been
extended to benefit from a wide variety of high performance compute resources
across the UK through Grid technologies to support larger scale
simulations
Recycle-GAN: Unsupervised Video Retargeting
We introduce a data-driven approach for unsupervised video retargeting that
translates content from one domain to another while preserving the style native
to a domain, i.e., if contents of John Oliver's speech were to be transferred
to Stephen Colbert, then the generated content/speech should be in Stephen
Colbert's style. Our approach combines both spatial and temporal information
along with adversarial losses for content translation and style preservation.
In this work, we first study the advantages of using spatiotemporal constraints
over spatial constraints for effective retargeting. We then demonstrate the
proposed approach for the problems where information in both space and time
matters such as face-to-face translation, flower-to-flower, wind and cloud
synthesis, sunrise and sunset.Comment: ECCV 2018; Please refer to project webpage for videos -
http://www.cs.cmu.edu/~aayushb/Recycle-GA
BioNessie - a grid enabled biochemical networks simulation environment
The simulation of biochemical networks provides insight and understanding about the underlying biochemical processes and pathways used by cells and organisms. BioNessie is a biochemical network simulator which has been developed at the University of Glasgow. This paper describes the simulator and focuses in particular on how it has been extended to benefit from a wide variety of high performance compute resources across the UK through Grid technologies to support larger scale simulations
- …