42 research outputs found

    Cohesive motion in one-dimensional flocking

    Full text link
    A one-dimensional rule-based model for flocking, that combines velocity alignment and long-range centering interactions, is presented and studied. The induced cohesion in the collective motion of the self-propelled agents leads to a unique group behaviour that contrasts with previous studies. Our results show that the largest cluster of particles, in the condensed states, develops a mean velocity slower than the preferred one in the absence of noise. For strong noise, the system also develops a non-vanishing mean velocity, alternating its direction of motion stochastically. This allows us to address the directional switching phenomenon. The effects of different sources of stochasticity on the system are also discussed.Comment: 24 pages, 11 figure

    Self-organization in systems of self-propelled particles

    Full text link
    We investigate a discrete model consisting of self-propelled particles that obey simple interaction rules. We show that this model can self-organize and exhibit coherent localized solutions in one- and in two-dimensions.In one-dimension, the self-organized solution is a localized flock of finite extent in which the density abruptly drops to zero at the edges.In two-dimensions, we focus on the vortex solution in which the particles rotate around a common center and show that this solution can be obtained from random initial conditions, even in the absence of a confining boundary. Furthermore, we develop a continuum version of our discrete model and demonstrate that the agreement between the discrete and the continuum model is excellent.Comment: 4 pages, 5 figure

    Jamming transition in a homogeneous one-dimensional system: the Bus Route Model

    Full text link
    We present a driven diffusive model which we call the Bus Route Model. The model is defined on a one-dimensional lattice, with each lattice site having two binary variables, one of which is conserved (``buses'') and one of which is non-conserved (``passengers''). The buses are driven in a preferred direction and are slowed down by the presence of passengers who arrive with rate lambda. We study the model by simulation, heuristic argument and a mean-field theory. All these approaches provide strong evidence of a transition between an inhomogeneous ``jammed'' phase (where the buses bunch together) and a homogeneous phase as the bus density is increased. However, we argue that a strict phase transition is present only in the limit lambda -> 0. For small lambda, we argue that the transition is replaced by an abrupt crossover which is exponentially sharp in 1/lambda. We also study the coarsening of gaps between buses in the jammed regime. An alternative interpretation of the model is given in which the spaces between ``buses'' and the buses themselves are interchanged. This describes a system of particles whose mobility decreases the longer they have been stationary and could provide a model for, say, the flow of a gelling or sticky material along a pipe.Comment: 17 pages Revtex, 20 figures, submitted to Phys. Rev.

    Phase Transition in the ABC Model

    Full text link
    Recent studies have shown that one-dimensional driven systems can exhibit phase separation even if the dynamics is governed by local rules. The ABC model, which comprises three particle species that diffuse asymmetrically around a ring, shows anomalous coarsening into a phase separated steady state. In the limiting case in which the dynamics is symmetric and the parameter qq describing the asymmetry tends to one, no phase separation occurs and the steady state of the system is disordered. In the present work we consider the weak asymmetry regime q=exp(β/N)q=\exp{(-\beta/N)} where NN is the system size and study how the disordered state is approached. In the case of equal densities, we find that the system exhibits a second order phase transition at some nonzero βc\beta_c. The value of βc=2π3\beta_c = 2 \pi \sqrt{3} and the optimal profiles can be obtained by writing the exact large deviation functional. For nonequal densities, we write down mean field equations and analyze some of their predictions.Comment: 18 pages, 3 figure

    First- and second-order phase transitions in a driven lattice gas with nearest-neighbor exclusion

    Full text link
    A lattice gas with infinite repulsion between particles separated by 1\leq 1 lattice spacing, and nearest-neighbor hopping dynamics, is subject to a drive favoring movement along one axis of the square lattice. The equilibrium (zero drive) transition to a phase with sublattice ordering, known to be continuous, shifts to lower density, and becomes discontinuous for large bias. In the ordered nonequilibrium steady state, both the particle and order-parameter densities are nonuniform, with a large fraction of the particles occupying a jammed strip oriented along the drive. The relaxation exhibits features reminiscent of models of granular and glassy materials.Comment: 8 pages, 5 figures; results due to bad random number generator corrected; significantly revised conclusion

    Zero-range process with open boundaries

    Full text link
    We calculate the exact stationary distribution of the one-dimensional zero-range process with open boundaries for arbitrary bulk and boundary hopping rates. When such a distribution exists, the steady state has no correlations between sites and is uniquely characterized by a space-dependent fugacity which is a function of the boundary rates and the hopping asymmetry. For strong boundary drive the system has no stationary distribution. In systems which on a ring geometry allow for a condensation transition, a condensate develops at one or both boundary sites. On all other sites the particle distribution approaches a product measure with the finite critical density \rho_c. In systems which do not support condensation on a ring, strong boundary drive leads to a condensate at the boundary. However, in this case the local particle density in the interior exhibits a complex algebraic growth in time. We calculate the bulk and boundary growth exponents as a function of the system parameters

    One-dimensional Particle Processes with Acceleration/Braking Asymmetry

    Get PDF
    The slow-to-start mechanism is known to play an important role in the particular shape of the Fundamental diagram of traffic and to be associated to hysteresis effects of traffic flow.We study this question in the context of exclusion and queueing processes,by including an asymmetry between deceleration and acceleration in the formulation of these processes. For exclusions processes, this corresponds to a multi-class process with transition asymmetry between different speed levels, while for queueing processes we consider non-reversible stochastic dependency of the service rate w.r.t the number of clients. The relationship between these 2 families of models is analyzed on the ring geometry, along with their steady state properties. Spatial condensation phenomena and metastability is observed, depending on the level of the aforementioned asymmetry. In addition we provide a large deviation formulation of the fundamental diagram (FD) which includes the level of fluctuations, in the canonical ensemble when the stationary state is expressed as a product form of such generalized queues.Comment: 28 pages, 8 figure

    Complex Dynamics of Bus, Tram and Elevator Delays in Transportation System

    Full text link
    It is necessary and important to operate buses and trams on time. The bus schedule is closely related to the dynamic motion of buses. In this part, we introduce the nonlinear maps for describing the dynamics of shuttle buses in the transportation system. The complex motion of the buses is explained by the nonlinear-map models. The transportation system of shuttle buses without passing is similar to that of the trams. The transport of elevators is also similar to that of shuttle buses with freely passing. The complex dynamics of a single bus is described in terms of the piecewise map, the delayed map, the extended circle map and the combined map. The dynamics of a few buses is described by the model of freely passing buses, the model of no passing buses, and the model of increase or decrease of buses. The nonlinear-map models are useful to make an accurate estimate of the arrival time in the bus transportation
    corecore