178 research outputs found

    Floral morphology in relation to adaptation and taxonomy in the Caryophyllaceae

    Get PDF

    Applied Geometry Optimization of an Innovative 3D-Printed Wet-Scrubber Nozzle with a Lattice Boltzmann Method

    Get PDF
    In contrast to conventional dry separators, new types of wet scrubbers with innovative nozzle geometries are capable of separating submicron particles with comparatively low pressure drop. As those geometries can easily be adapted using 3D-printing manufacturing, an applied geometry optimization can lead to a fast and cost-efficient product development cycle. In this study, the lattice Boltzmann method is used to optimize the pressure drop associated with a novel nozzle design. Simulated pressure drop data are validated with experimentally determined ones. By replacing originally installed ellipsoid-shaped bluff bodies with foil-shaped structures according to the 4-digit NACA-series, an optimization approach regarding the resulting pressure drop is described

    Joint Segmentation and Uncertainty Visualization of Retinal Layers in Optical Coherence Tomography Images using Bayesian Deep Learning

    Full text link
    Optical coherence tomography (OCT) is commonly used to analyze retinal layers for assessment of ocular diseases. In this paper, we propose a method for retinal layer segmentation and quantification of uncertainty based on Bayesian deep learning. Our method not only performs end-to-end segmentation of retinal layers, but also gives the pixel wise uncertainty measure of the segmentation output. The generated uncertainty map can be used to identify erroneously segmented image regions which is useful in downstream analysis. We have validated our method on a dataset of 1487 images obtained from 15 subjects (OCT volumes) and compared it against the state-of-the-art segmentation algorithms that does not take uncertainty into account. The proposed uncertainty based segmentation method results in comparable or improved performance, and most importantly is more robust against noise

    CO2 and H2 Adsorption and Reaction at Nin/YSZ(111) Interfaces: A Density Functional Theory Study

    Get PDF
    To recycle CO2 into sustainable fuels and chemicals, coelectrolysis of CO2 and H2O can be achieved in solid oxide electrolysis cells, where the molecules are supplied to the Ni/YSZ electrode (YSZ = yttria-stabilized zirconia). Oxygen diffusion along the electrode has been identified as the critical step in the process, where YSZ is the common catalyst support. We have investigated the interaction of a CO2 molecule with the clean YSZ(111) surface and with Nin/YSZ(111) (n = 1, 4–7, 10, and 20) interfaces, using a spin-polarized density functional theory and a long-range dispersion correction. Here, we have considered up to six initial adsorption sites and two orientations for the CO2 molecule, which showed that the adsorption is stronger at the Nin/YSZ(111) (n = 4–7, 10, and 20) interface than on the clean YSZ(111) and Ni1/YSZ(111) systems. Additionally, we have determined that the preferential adsorption site of CO2 is at the interface between the Ni clusters and the YSZ(111) surface. We have observed a bending and stretching of the molecule, demonstrating its activation upon adsorption, because of charge transfer between the metal cluster and the molecule and a mixing between Ni orbitals and CO2 orbitals. In this work, we show that although the electronic structure of the clusters depends on the cluster size, the interaction strength of CO2 with the interface is independent of the size of the supported nickel particle. Finally, we have considered the reverse water gas shift reaction and determined the hydrocarboxylic intermediate in the reaction mechanism over Ni5/YSZ(111)

    Investigating porcine parvoviruses genogroup 2 infection using in situ polymerase chain reaction

    Get PDF
    Abstract Background Porcine parvovirus 2 (PPV2) was detected in swine serum without showing any relationship with disease. The emergence of the virus seemed to be a unique event until other genetically highly similar parvoviruses were identified in China and, later in 2012, the presence of the virus was also described in Europe. PPV2 is widely distributed in pig populations where it is suspected to be involved in respiratory conditions, based on its frequent detection in lung samples. In order to investigate the potential pathogenic involvement of PPV2, 60 dead pigs were examined from two farms. They were necropsied and tested for PPV2 and PCV2 (Porcine circovirus type 2) by PCR; by Brown and Brenn (B&B) staining for bacteria; by immunohistochemistry (IHC) to detect CD3, Swine leukocyte antigen class II DQ (SLAIIDQ), lysozyme, porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza (SIV), Mycoplasma hyopneumoniae (Mhyo); and by in situ hybridization (ISH) to detect ssDNA and dsDNA of PCV2. PPV2 positive samples were subjected to in situ polymerase chain reaction (IS-PCR) including double staining method to detect PPV2 and host cell markers. To calculate statistical difference we used GENMOD or LOGISTIC procedures in Statistical Analysis System (SAS®). Results We found that the PPV2 was localized mostly in lymphocytes in lungs, lymph nodes and liver. Neither CD3 antigen nor lysozyme was expressed by these infected cells. In contrast, low levels of SLAIIDQ were expressed by infected cells, suggesting that PPV2 may have a specific tropism for immature B lymphocytes and/or NK lymphocytes though possibly not T lymphocytes. Conclusion The overall conclusion of this study indicates that PPV2 may contribute to the pathogenesis of pneumonia

    Measured and projected beam backgrounds in the Belle II experiment at the SuperKEKB collider

    Get PDF
    The Belle II experiment at the SuperKEKB electron-positron collider aims to collect an unprecedented data set of 50 ab150~{\rm ab}^{-1} to study CPCP-violation in the BB-meson system and to search for Physics beyond the Standard Model. SuperKEKB is already the world's highest-luminosity collider. In order to collect the planned data set within approximately one decade, the target is to reach a peak luminosity of 6×1035 cm2s1\rm 6 \times 10^{35}~cm^{-2}s^{-1} by further increasing the beam currents and reducing the beam size at the interaction point by squeezing the betatron function down to βy=0.3 mm\beta^{*}_{\rm y}=\rm 0.3~mm. To ensure detector longevity and maintain good reconstruction performance, beam backgrounds must remain well controlled. We report on current background rates in Belle II and compare these against simulation. We find that a number of recent refinements have significantly improved the background simulation accuracy. Finally, we estimate the safety margins going forward. We predict that backgrounds should remain high but acceptable until a luminosity of at least 2.8×1035 cm2s1\rm 2.8 \times 10^{35}~cm^{-2}s^{-1} is reached for βy=0.6 mm\beta^{*}_{\rm y}=\rm 0.6~mm. At this point, the most vulnerable Belle II detectors, the Time-of-Propagation (TOP) particle identification system and the Central Drift Chamber (CDC), have predicted background hit rates from single-beam and luminosity backgrounds that add up to approximately half of the maximum acceptable rates.Comment: 28 pages, 17 figures, 9 tables (revised

    A large multi-country outbreak of monkeypox across 41 countries in the WHO European Region, 7 March to 23 August 2022

    Get PDF
    Following the report of a non-travel-associated cluster of monkeypox cases by the United Kingdom in May 2022, 41 countries across the WHO European Region have reported 21,098 cases and two deaths by 23 August 2022. Nowcasting suggests a plateauing in case notifications. Most cases (97%) are MSM, with atypical rash-illness presentation. Spread is mainly through close contact during sexual activities. Few cases are reported among women and children. Targeted interventions of at-risk groups are needed to stop further transmission. © 2022 European Centre for Disease Prevention and Control (ECDC). All rights reserved.The authors affiliated with the World Health Organization (WHO) are alone responsible for the views expressed in this publication and they do not necessarily represent the decisions or policies of the WHO. The co-author is a fellow of the ECDC Fellowship Programme, supported financially by the European Centre for Disease Prevention and Control (ECDC). The views and opinions expressed herein do not state or reflect those of ECDC. ECDC is not responsible for the data and information collation and analysis and cannot be held liable for conclusions or opinions drawn

    The utility of Tc-99m-EDDA/HYNIC-TOC scintigraphy for assessment of lung lesions in patients with neuroendocrine tumors

    Get PDF
    Our aim was to assess clinical utility of Tc-99m-EDDA/HYNIC-TOC scintigraphy for evaluation of lung lesions in patients with neuroendocrine tumors (NETs). Single photon emission computed tomography (SPECT) of the thorax and whole body scintigraphy were performed in 34 patients using Tc-99m-EDDA/HYNIC-TOC. Visual assessment was complemented by semiquantitative evaluation based on tumor to non-tumor (TINT) ratio. Clinical, laboratory, and histological findings served as the standard for comparison. Enhanced tracer uptake was observed on both SPECT and whole body scintigraphy in 29 of 34 patients (88% sensitivity). TINT ratios were significantly higher on SPECT than whole body images (2.96 +/- 1.07 vs. 1.70 +/- 0.43, p LT 0.01) and did not correlate with NET proliferation index Ki-67 (r= - 0.36, p=0.27). Conclusion: Tc-99m-EDDA/HYNIC-TOC scintigraphy is useful for evaluation of NET tissue in the lungs. SPECT provides better visualization of lung lesions than whole body scintigraphy. The intensity of tracer uptake, however, does not relate to the proliferation rate of NETs. Tc-99m-EDDA/HYNIC-TOC scintigraphy may be helpful for selecting and monitoring treatment options, particularly when radiolabeled somatostatin analogue therapy becomes available
    corecore