715 research outputs found

    The theoretical reflectance of X-rays from optical surfaces

    Get PDF
    The theoretical reflectance of X-rays from various materials and evaporated films is presented. A computer program was written that computes the reflected intensity as a function of the angle of the incident radiation. The quantities necessary to generate the efficiency and their effect on the data are demonstrated. Five materials were chosen for evaluation: (1) fused silica, (2) chromium, (3) beryllium, (4) gold, and (5) a thin layer contaminant. Fused silica is a versatile and common material; chromium has high reflection efficiency at X-ray wavelengths and is in the middle of the atomic number range; beryllium contains a single atomic shell and has a low range atomic number; gold contains multiple atomic shells and has a high atomic number; the contaminant is treated as a thin film in the calculations and results are given as a function of thickness for selected wavelengths. The theoretical results are compared to experimental data at lambda = 8.34 A

    Equilibration and freeze-out in an exploding system

    Full text link
    We use a simple gas model to study non-equilibrium aspects of the multiparticle dynamics relevant to heavy ion collisions. By performing numerical simulations for various initial conditions we identify several characteristic features of the fast dynamics occurring in implosion-explosion like processes.Comment: 4 pages, submitted to PR

    Teleportation of Nonclassical Wave Packets of light

    Full text link
    We report on the experimental quantum teleportation of strongly nonclassical wave packets of light. To perform this full quantum operation while preserving and retrieving the fragile non-classicality of the input state, we have developed a broadband, zero-dispersion teleportation apparatus that works in conjunction with time-resolved state preparation equipment. Our approach brings within experimental reach a whole new set of hybrid protocols involving discrete- and continuous-variable techniques in quantum information processing for optical sciences

    Time gating of heralded single photons for atomic memories

    Full text link
    We demonstrate a method for time gating the standard heralded continuous- wave (cw) spontaneous parametric down-converted (SPDC) single photon source by using pulsed pumping of the optical parametric oscillator (OPO) below threshold. The narrow bandwidth, high purity, high spectral brightness and the pseudo-deterministic character make the source highly suitable for light-atom interfaces with atomic memories.Comment: Accepted for publication in Optics Letter

    Time domain Einstein-Podolsky-Rosen correlation

    Get PDF
    We experimentally demonstrate creation and characterization of Einstein-Podolsky-Rosen (EPR) correlation between optical beams in the time domain. The correlated beams are created with two independent continuous-wave optical parametric oscillators and a half beam splitter. We define temporal modes using a square temporal filter with duration TT and make time-resolved measurement on the generated state. We observe the correlations between the relevant conjugate variables in time domain which correspond to the EPR correlation. Our scheme is extendable to continuous variable quantum teleportation of a non-Gaussian state defined in the time domain such as a Schr\"odinger cat-like state.Comment: 4 pages, 4 figure

    Crossover Scaling Functions in One Dimensional Dynamic Growth Models

    Full text link
    The crossover from Edwards-Wilkinson (s=0s=0) to KPZ (s>0s>0) type growth is studied for the BCSOS model. We calculate the exact numerical values for the k=0k=0 and 2π/N2\pi/N massgap for N18N\leq 18 using the master equation. We predict the structure of the crossover scaling function and confirm numerically that m04(π/N)2[1+3u2(s)N/(2π2)]0.5m_0\simeq 4 (\pi/N)^2 [1+3u^2(s) N/(2\pi^2)]^{0.5} and m12(π/N)2[1+u2(s)N/π2]0.5m_1\simeq 2 (\pi/N)^2 [1+ u^2(s) N/\pi^2]^{0.5}, with u(1)=1.03596967u(1)=1.03596967. KPZ type growth is equivalent to a phase transition in meso-scopic metallic rings where attractive interactions destroy the persistent current; and to endpoints of facet-ridges in equilibrium crystal shapes.Comment: 11 pages, TeX, figures upon reques

    High purity bright single photon source

    Full text link
    Using cavity-enhanced non-degenerate parametric downconversion, we have built a frequency tunable source of heralded single photons with a narrow bandwidth of 8 MHz, making it compatible with atomic quantum memories. The photon state is 70% pure single photon as characterized by a tomographic measurement and reconstruction of the quantum state, revealing a clearly negative Wigner function. Furthermore, it has a spectral brightness of ~1,500 photons/s per MHz bandwidth, making it one of the brightest single photon sources available. We also investigate the correlation function of the down-converted fields using a combination of two very distinct detection methods; photon counting and homodyne measurement.Comment: 9 pages, 4 figures; minor changes, added referenc

    Van Allen Probe Charging During the St. Patrick's Day Event

    Get PDF
    The geomagnetic storms on and around March 17, 2015 marked the largest storms seen in the declining phase of the solar cycle to date. We use the Helium Oxygen Proton Electron (HOPE) mass spectrometer on board the Van Allen Probe - A and B satellites to study in detail the charging effects seen on these spacecraft during this time. Ion particle flux data provides information on the magnitude of the charging events using the ion line charging signature due to low energy ions accelerated by the spacecraft potential. Electron flux observations are used to correlate the charging environment with variations in spacecraft potential through the event. We also investigate the density and temperature of ions and electrons during the time of the charging event

    Does the quark-gluon plasma contain stable hadronic bubbles?

    Get PDF
    We calculate the thermodynamic potential of bubbles of hadrons embedded in quark-gluon plasma, and of droplets of quark-gluon plasma embedded in hadron phase. This is a generalization of our previous results to the case of non-zero chemical potentials. As in the zero chemical potential case, we find that a quark-gluon plasma in thermodynamic equilibrium may contain stable bubbles of hadrons of radius R1R \simeq 1 fm. The calculations are performed within the MIT Bag model, using an improved multiple reflection expansion. The results are of relevance for neutron star phenomenology and for ultrarelativistic heavy ion collisions.Comment: 12 pages including 8 figures. To appear in Phys. Rev.

    Interactions between uptake of amino acids and inorganic nitrogen in wheat plants

    Get PDF
    Soil-borne amino acids may constitute a source of nitrogen (N) for plants in various terrestrial ecosystems but their importance for total N nutrition is unclear, particularly in nutrient-rich arable soils. One reason for this uncertainty is lack of information on how the absorption of amino acids by plant roots is affected by the simultaneous presence of inorganic N forms. The objective of the present study was to study absorption of glycine (Gly) and glutamine (Gln) by wheat roots and their interactions with nitrate (NO<sub>3</sub><sup>−</sup>) and ammonium (NH<sub>4</sub><sup>+</sup>) during uptake. The underlying hypothesis was that amino acids, when present in nutrient solution together with inorganic N, may lead to down-regulation of the inorganic N uptake, thereby resulting in similar total N uptake rates. Amino acids were enriched with double-labelled <sup>15</sup>N and <sup>13</sup>C, while NO<sub>3</sub><sup>−</sup> and NH<sub>4</sub><sup>+</sup> acquisition was determined by their rate of removal from the nutrient solution surrounding the roots. The uptake rates of NO<sub>3</sub><sup>−</sup> and NH<sub>4</sub><sup>+</sup> did not differ from each other and were generally about twice as high as the uptake rate of organic N when the different N forms were supplied separately in concentrations of 2 mM. Nevertheless, replacement of 50% of the inorganic N with organic N was able to restore the N uptake to the same level as that in the presence of only inorganic N. Co-provision of NO<sub>3</sub><sup>−</sup> did not affect glycine uptake, while the presence of glycine down-regulated NO<sub>3</sub><sup>−</sup> uptake. The ratio between <sup>13</sup>C and <sup>15</sup>N were lower in shoots than in roots and also lower than the theoretical values, reflecting higher C losses via respiratory processes compared to N losses. It is concluded that organic N can constitute a significant N-source for wheat plants and that there is an interaction between the uptake of inorganic and organic N
    corecore