research

Crossover Scaling Functions in One Dimensional Dynamic Growth Models

Abstract

The crossover from Edwards-Wilkinson (s=0s=0) to KPZ (s>0s>0) type growth is studied for the BCSOS model. We calculate the exact numerical values for the k=0k=0 and 2π/N2\pi/N massgap for N18N\leq 18 using the master equation. We predict the structure of the crossover scaling function and confirm numerically that m04(π/N)2[1+3u2(s)N/(2π2)]0.5m_0\simeq 4 (\pi/N)^2 [1+3u^2(s) N/(2\pi^2)]^{0.5} and m12(π/N)2[1+u2(s)N/π2]0.5m_1\simeq 2 (\pi/N)^2 [1+ u^2(s) N/\pi^2]^{0.5}, with u(1)=1.03596967u(1)=1.03596967. KPZ type growth is equivalent to a phase transition in meso-scopic metallic rings where attractive interactions destroy the persistent current; and to endpoints of facet-ridges in equilibrium crystal shapes.Comment: 11 pages, TeX, figures upon reques

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020