30 research outputs found
Barrier formation at metal/organic interfaces: dipole formation and the Charge Neutrality Level
The barrier formation for metal/organic semiconductor interfaces is analyzed
within the Induced Density of Interface States (IDIS) model. Using weak
chemisorption theory, we calculate the induced density of states in the organic
energy gap and show that it is high enough to control the barrier formation. We
calculate the Charge Neutrality Levels of several organic molecules (PTCDA,
PTCBI and CBP) and the interface Fermi level for their contact with a Au(111)
surface. We find an excellent agreement with the experimental evidence and
conclude that the barrier formation is due to the charge transfer between the
metal and the states induced in the organic energy gap.Comment: 7 pages, Proceedings of ICFSI-9, Madrid, Spain (September 2003),
special issue of Applied Surface Science (in press
U-shaped motor development emerges from Goal Babbling with intrinsic motor noise
Narioka K, Steil JJ. U-shaped motor development emerges from Goal Babbling with intrinsic motor noise. Presented at the Joint IEEE Int. Conf. Developmental Learning and Epigenetic Robotics
Effect of exploratory perturbation on the formation of kinematic synergies in Goal Babbling
Narioka K, Reinhart F, Steil JJ. Effect of exploratory perturbation on the formation of kinematic synergies in Goal Babbling. In: 2015 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob). Institute of Electrical & Electronics Engineers (IEEE); 2015
Goal-related feedback guides motor exploration and redundancy resolution in human motor skill acquisition.
The plasticity of the human nervous system allows us to acquire an open-ended repository of sensorimotor skills in adulthood, such as the mastery of tools, musical instruments or sports. How novel sensorimotor skills are learned from scratch is yet largely unknown. In particular, the so-called inverse mapping from goal states to motor states is underdetermined because a goal can often be achieved by many different movements (motor redundancy). How humans learn to resolve motor redundancy and by which principles they explore high-dimensional motor spaces has hardly been investigated. To study this question, we trained human participants in an unfamiliar and redundant visually-guided manual control task. We qualitatively compare the experimental results with simulation results from a population of artificial agents that learned the same task by Goal Babbling, which is an inverse-model learning approach for robotics. In Goal Babbling, goal-related feedback guides motor exploration and thereby enables robots to learn an inverse model directly from scratch, without having to learn a forward model first. In the human experiment, we tested whether different initial conditions (starting positions of the hand) influence the acquisition of motor synergies, which we identified by Principal Component Analysis in the motor space. The results show that the human participants' solutions are spatially biased towards the different starting positions in motor space and are marked by a gradual co-learning of synergies and task success, similar to the dynamics of motor learning by Goal Babbling. However, there are also differences between human learning and the Goal Babbling simulations, as humans tend to predominantly use Degrees of Freedom that do not have a large effect on the hand position, whereas in Goal Babbling, Degrees of Freedom with a large effect on hand position are used predominantly. We conclude that humans use goal-related feedback to constrain motor exploration and resolve motor redundancy when learning a new sensorimotor mapping, but in a manner that differs from the current implementation of Goal Babbling due to different constraints on motor exploration
Substrate-induced magnetic ordering and switching of iron porphyrin molecules
To realize molecular spintronic devices, it is important to externally control the magnetization of a molecular magnet. One class of materials particularly promising as building blocks for molecular electronic devices is the paramagnetic porphyrin molecule in contact with a metallic substrate. Here, we study the structural orientation and the magnetic coupling of in-situ-sublimated Fe porphyrin molecules on ferromagnetic Ni and Co films on Cu(100). Our studies involve X-ray absorption spectroscopy and X-ray magnetic circular dichroism experiments. In a combined experimental and computational study we demonstrate that owing to an indirect, superexchange interaction between Fe atoms in the molecules and atoms in the substrate (Co or Ni) the paramagnetic molecules can be made to order ferromagnetically. The Fe magnetic moment can be rotated along directions in plane as well as out of plane by a magnetization reversal of the substrate, thereby opening up an avenue for spin-dependent molecular electronics