1,828,824 research outputs found

    Molecular dynamics study of contact mechanics: contact area and interfacial separation from small to full contact

    Get PDF
    We report a molecular dynamics study of the contact between a rigid solid with a randomly rough surface and an elastic block with a flat surface. We study the contact area and the interfacial separation from small contact (low load) to full contact (high load). For small load the contact area varies linearly with the load and the interfacial separation depends logarithmically on the load. For high load the contact area approaches to the nominal contact area (i.e., complete contact), and the interfacial separation approaches to zero. The present results may be very important for soft solids, e.g., rubber, or for very smooth surfaces, where complete contact can be reached at moderate high loads without plastic deformation of the solids.Comment: 4 pages,5 figure

    Optimal multicopy asymmetric Gaussian cloning of coherent states

    Get PDF
    We investigate the asymmetric Gaussian cloning of coherent states which produces M copies from N input replicas, such that the fidelity of all copies may be different. We show that the optimal asymmetric Gaussian cloning can be performed with a single phase-insensitive amplifier and an array of beam splitters. We obtain a simple analytical expression characterizing the set of optimal asymmetric Gaussian cloning machines.Comment: 7 pages, 2 figures, RevTeX

    Ionization of hydrogen atoms by electron impact at 1eV, 0.5eV and 0.3eV above threshold

    Full text link
    We present here triple differential cross sections for ionization of hydrogen atoms by electron impact at 1eV, 0.5eV and 0.3eV energy above threshold, calculated in the hyperspherical partial wave theory. The results are in very good agreement with the available semiclassical results of Deb and Crothers \cite{DC02} for these energies. With this, we are able to demonstrate that the hyperspherical partial wave theory yields good cross sections from 30 eV \cite{DPC03} down to near threshold for equal energy sharing kinematics.Comment: 6 pages, 9 figure

    Multipartite Asymmetric Quantum Cloning

    Full text link
    We investigate the optimal distribution of quantum information over multipartite systems in asymmetric settings. We introduce cloning transformations that take NN identical replicas of a pure state in any dimension as input, and yield a collection of clones with non-identical fidelities. As an example, if the clones are partitioned into a set of MAM_A clones with fidelity FAF^A and another set of MBM_B clones with fidelity FBF^B, the trade-off between these fidelities is analyzed, and particular cases of optimal NMA+MBN \to M_A+M_B cloning machines are exhibited. We also present an optimal 11+1+11 \to 1+1+1 cloning machine, which is the first known example of a tripartite fully asymmetric cloner. Finally, it is shown how these cloning machines can be optically realized.Comment: 5 pages, 2 figure

    Roll waves in mud

    Get PDF
    The stability of a viscoplastic fluid film falling down an inclined plane is explored, with the aim of determining the critical Reynolds number for the onset of roll waves. The Herschel–Bulkley constitutive law is adopted and the fluid is assumed two-dimensional and incompressible. The linear stability problem is described for an equilibrium in the form of a uniform sheet flow, when perturbed by introducing an infinitesimal stress perturbation. This flow is stable for very high Reynolds numbers because the rigid plug riding atop the fluid layer cannot be deformed and the free surface remains flat. If the flow is perturbed by allowing arbitrarily small strain rates, on the other hand, the plug is immediately replaced by a weakly yielded ‘pseudo-plug’ that can deform and reshape the free surface. This situation is modelled by lubrication theory at zero Reynolds number, and it is shown how the fluid exhibits free-surface instabilities at order-one Reynolds numbers. Simpler models based on vertical averages of the fluid equations are evaluated, and one particular model is identified that correctly predicts the onset of instability. That model is used to describe nonlinear roll waves

    Cloning quantum entanglement in arbitrary dimensions

    Full text link
    We have found a quantum cloning machine that optimally duplicates the entanglement of a pair of dd-dimensional quantum systems. It maximizes the entanglement of formation contained in the two copies of any maximally-entangled input state, while preserving the separability of unentangled input states. Moreover, it cannot increase the entanglement of formation of all isotropic states. For large dd, the entanglement of formation of each clone tends to one half the entanglement of the input state, which corresponds to a classical behavior. Finally, we investigate a local entanglement cloner, which yields entangled clones with one fourth the input entanglement in the large-dd limit.Comment: 6 pages, 3 figure

    Collective Rotation of Tetrahedral Nuclei in the Cranking Model

    Full text link
    The three-dimensional cranking model is used to investigate the microscopic aspects of the rotation of nuclei with the tetrahedral symmetry. Two classes of rotation axes are studied corresponding to two different discrete symmetries of the rotating hamiltonian. Self-consistent Hartree-Fock-Bogoliubov calculations show that the tetrahedral minimum remains remarkably stable until the first single-particle crossing.Comment: Proceedings of the XII Nuclear Physics Workshop Pierre and Marie Curie, October 2005. To be published in IJMP
    corecore