81 research outputs found

    Analysis of Slotted ALOHA with Multipacket Messages in Clustered Surveillance Networks

    Get PDF
    This work presents an analysis of a cluster of finite population of low cost sensor nodes operating in a p-persistent S-Aloha framework with multipacket messages. Using this analytical framework, we consider the issue of partitioning the nodes and available frequencies into groups so as to maximize the system throughput. Assigning the nodes and frequencies into “groups” is important because the size of the group impacts the tradeoff between the benefits of frequency diversity and the cost of collision on the shared medium imposed by the nodes in a group. We study this tradeoff through analytical and numerical results and show how the correct choice of group sizes can vary depending on various factors like the ratio of nodes to frequencies and the overall system load

    Link-State Routing With Hop-by-Hop Forwarding Can Achieve Optimal Traffic Engineering

    Full text link

    PIM kinases phosphorylate lactate dehydrogenase A at serine 161 and suppress its nuclear ubiquitination

    Get PDF
    Lactate dehydrogenase A (LDHA) is a glycolytic enzyme catalysing the reversible conversion of pyruvate to lactate. It has been implicated as a substrate for PIM kinases, yet the relevant target sites and functional consequences of phosphorylation have remained unknown. Here, we show that all three PIM family members can phosphorylate LDHA at serine 161. When we investigated the physiological consequences of this phosphorylation in PC3 prostate cancer and MCF7 breast cancer cells, we noticed that it suppressed ubiquitin-mediated degradation of nuclear LDHA and promoted interactions between LDHA and 14-3-3 proteins. By contrast, in CRISPR/Cas9-edited knock-out cells lacking all three PIM family members, ubiquitination of nuclear LDHA was dramatically increased followed by its decreased expression. Our data suggest that PIM kinases support nuclear LDHA expression and activities by promoting phosphorylation-dependent interactions of LDHA with 14-3-3 epsilon, which shields nuclear LDHA from ubiquitin-mediated degradation

    PIM kinases inhibit AMPK activation and promote tumorigenicity by phosphorylating LKB1

    Get PDF
    BackgroundThe oncogenic PIM kinases and the tumor-suppressive LKB1 kinase have both been implicated in the regulation of cell growth and metabolism, albeit in opposite directions. Here we investigated whether these kinases interact with each other to influence AMPK activation and tumorigenic growth of prostate and breast cancer cells.MethodsWe first determined how PIM and LKB1 kinases affect AMPK phosphorylation levels. We then used in vitro kinase assays to demonstrate that LKB1 is phosphorylated by PIM kinases, and site-directed mutagenesis to identify the PIM target sites in LKB1. The cellular functions of PIM and LKB1 kinases were evaluated using either pan-PIM inhibitors or CRISPR/Cas9 genomic editing, with which all three PIM family members and/or LKB1 were knocked out from PC3 prostate and MCF7 breast cancer cell lines. In addition to cell proliferation assays, we examined the effects of PIM and/or LKB1 loss on tumor growth using the chick embryo chorioallantoic membrane (CAM) xenograft model.ResultsWe provide both genetic and pharmacological evidence to demonstrate that inhibition of PIM expression or activity increases phosphorylation of AMPK at Thr172 in both PC3 and MCF7 cells, but not in their derivatives lacking LKB1. This is explained by our observation that all three PIM family kinases can phosphorylate LKB1 at Ser334. Wild-type LKB1, but not its phosphodeficient derivative, can restore PIM inhibitor-induced AMPK phosphorylation in LKB1 knock-out cells. In the CAM model, loss of LKB1 enhances tumorigenicity of PC3 xenografts, while cells lacking both LKB1 and PIMs exhibit slower proliferation rates and form smaller tumors.ConclusionPIM kinases are novel negative regulators of LKB1 that affect AMPK activity in an LKB1-dependent fashion. The impairment of cell proliferation and tumor growth in cells lacking both LKB1 and PIMs indicates that these kinases possess a shared signaling role in the context of cancer. These data also suggest that PIM inhibitors may be a rational therapeutic option for LKB1-deficient tumors.</p

    De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development

    Get PDF
    Bosma arhinia microphthalmia syndrome (BAMS) is an extremely rare and striking condition characterized by complete absence of the nose with or without ocular defects. We report here that missense mutations in the epigenetic regulator SMCHD1 mapping to the extended ATPase domain of the encoded protein cause BAMS in all 14 cases studied. All mutations were de novo where parental DNA was available. Biochemical tests and in vivo assays in Xenopus laevis embryos suggest that these mutations may behave as gain-of-function alleles. This finding is in contrast to the loss-of-function mutations in SMCHD1 that have been associated with facioscapulohumeral muscular dystrophy (FSHD) type 2. Our results establish SMCHD1 as a key player in nasal development and provide biochemical insight into its enzymatic function that may be exploited for development of therapeutics for FSHD

    PIM1 accelerates prostate cancer cell motility by phosphorylating actin capping proteins

    Get PDF
    Background: The PIM family kinases promote cancer cell survival and motility as well as metastatic growth in various types of cancer. We have previously identified several PIM substrates, which support cancer cell migration and invasiveness. However, none of them are known to regulate cellular movements by directly interacting with the actin cytoskeleton. Here we have studied the phosphorylation-dependent effects of PIM1 on actin capping proteins, which bind as heterodimers to the fast-growing actin filament ends and stabilize them. Methods: Based on a phosphoproteomics screen for novel PIM substrates, we have used kinase assays and fluorescence-based imaging techniques to validate actin capping proteins as PIM1 substrates and interaction partners. We have analysed the functional consequences of capping protein phosphorylation on cell migration and adhesion by using wound healing and real-time impedance-based assays. We have also investigated phosphorylation-dependent effects on actin polymerization by analysing the protective role of capping protein phosphomutants in actin disassembly assays. Results: We have identified capping proteins CAPZA1 and CAPZB2 as PIM1 substrates, and shown that phosphorylation of either of them leads to increased adhesion and migration of human prostate cancer cells. Phosphorylation also reduces the ability of the capping proteins to protect polymerized actin from disassembly. </p

    Network Utility Maximization with Nonconcave, Coupled, and Reliability-based Utilities

    No full text
    Network Utility Maximization (NUM) has significantly extended the classical network flow problem and provided an emerging framework to design resource allocation algorithms such as TCP congestion control and to understand layering as optimization decomposition. We present a summary of very recent results in the theory and applications of NUM. We show new distributed algorithms that converge to the globally optimal rate allocation for NUM problems with nonconcave utility functions representing inelastic flows, with coupled utility functions representing interference effects or hybrid social-selfish utilities, and with rate-reliability tradeoff through adaptive channel coding in the physical layer. We conclude by discussing how do different decompositions of a generalized NUM problem correspond to different layering architectures

    Network utility maximization with nonconcave, coupled, and reliability-based uilities

    No full text
    • …
    corecore