124 research outputs found
High temperature behavior of Sr-doped layered cobaltites Y(Ba1-xSrx)Co2O5.5: phase stability and structural properties
In this article we present a neutron diffraction in-situ study of the thermal
evolution and high-temperature structure of layered cobaltites Y(Ba, Sr)Co2
O5+{\delta}. Neutron thermodiffractograms and magnetic susceptibility
measurements are reported in the temperature range 20 K <= T <= 570 K, as well
as high resolution neutron diffraction experiments at selected temperatures.
Starting from the as-synthesized samples with {\delta} ~ 0.5, we show that the
room temperature phases remain stable up to 550 K, where they start loosing
oxygen and transform to a vacancy-disordered "112" structure with tetragonal
symmetry. Our results also show how the so-called "122" structure can be
stabilized at high temperature (around 450 K) in a sample in which the addition
of Sr at the Ba site had suppressed its formation. In addition, we present the
structural and magnetic properties of the resulting samples with a new oxygen
content {\delta} ~ 0.25 in the temperature range 20 K <= T <= 300 K
Brillouin scattering studies in FeO across the Verwey transition
Brillouin scattering studies have been carried out on high quality single
crystals of FeO with [100] and [110] faces in the temperature range of
300 to 30 K. The room temperature spectrum shows a surface Rayleigh wave (SRW)
mode at 8 GHz and a longitudinal acoustic (LA) mode at 60 GHz. The SRW mode
frequency shows a minimum at the Verwey transition temperature of 123 K.
The softening of the SRW mode frequency from about 250 K to can be
quantitatively understood as a result of a decrease in the shear elastic
constant C, arising from the coupling of shear strain to charge
fluctuations. On the other hand, the LA mode frequency does not show any
significant change around , but shows a large change in its intensity. The
latter shows a maximum at around 120 K in the cooling run and at 165 K in the
heating run, exhibiting a large hysteresis of 45 K. This significant change in
intensity may be related to the presence of stress-induced ordering of
Fe and Fe at the octahedral sites, as well as to stress-induced
domain wall motion.Comment: 14 pages, 3 figures, accepted in Physical Review B 200
Comparative Antimicrobial Activity of Granulysin against Bacterial Biothreat Agents
Granulysin is a cationic protein produced by human T cells and natural killer cells that can kill bacterial pathogens through disruption of microbial membrane integrity. Herein we demonstrate antimicrobial activity of the granulysin peptide derived from the active site against Bacillus anthracis, Yersinia pestis, Francisella tularensis, and Burkholderia mallei, and show pathogen-specific differences in granulysin peptide effects. The susceptibility of Y. pestis to granulysin is temperature dependent, being less susceptible when grown at the flea arthropod vector temperature (26°C) than when grown at human body temperature. These studies suggest that augmentation of granulysin expression by cytotoxic lymphocytes, or therapeutic application of granulysin peptides, could constitute important strategies for protection against select agent bacterial pathogens. Investigations of the microbial surface molecules that determine susceptibility to granulysin may identify important mechanisms that contribute to pathogenesis
Hijacking of the Pleiotropic Cytokine Interferon-γ by the Type III Secretion System of Yersinia pestis
Yersinia pestis, the causative agent of bubonic plague, employs its type III secretion system to inject toxins into target cells, a crucial step in infection establishment. LcrV is an essential component of the T3SS of Yersinia spp, and is able to associate at the tip of the secretion needle and take part in the translocation of anti-host effector proteins into the eukaryotic cell cytoplasm. Upon cell contact, LcrV is also released into the surrounding medium where it has been shown to block the normal inflammatory response, although details of this mechanism have remained elusive. In this work, we reveal a key aspect of the immunomodulatory function of LcrV by showing that it interacts directly and with nanomolar affinity with the inflammatory cytokine IFNγ. In addition, we generate specific IFNγ mutants that show decreased interaction capabilities towards LcrV, enabling us to map the interaction region to two basic C-terminal clusters of IFNγ. Lastly, we show that the LcrV-IFNγ interaction can be disrupted by a number of inhibitors, some of which display nanomolar affinity. This study thus not only identifies novel potential inhibitors that could be developed for the control of Yersinia-induced infection, but also highlights the diversity of the strategies used by Y. pestis to evade the immune system, with the hijacking of pleiotropic cytokines being a long-range mechanism that potentially plays a key role in the severity of plague
MPLEx: a method for simultaneous pathogen inactivation and extraction of samples for multi-omics profiling
The continued emergence and spread of infectious agents is of great concern, and systems biology approaches to infectious disease research can advance our understanding of host–pathogen relationships and facilitate the development of new therapies and vaccines
Hypothermia following antipsychotic drug use
Objective: Hypothermia is an adverse drug reaction (ADR) of
antipsychotic drug (APD) use. Risk factors for hypothermia in
ADP users are unknown. We studied which risk factors for
hypothermia can be identified based on case reports.
Method: Case reports of hypothermia in APD-users found in
PUBMED or EMBASE were searched for risk factors. The
WHO international database for Adverse Drug Reactions was
searched for reports of hypothermia and APD use.
Results: The literature search resulted in 32 articles containing
43 case reports. In the WHO database, 480 reports were
registered of patients developing hypothermia during the
use of APDs which almost equals the number of reports for
hyperthermia associated with APD use (n=524). Hypothermia
risk seems to be increased in the first days following start
or dose increase of APs. APs with strong 5-HT2 antagonism
seem to be more involved in hypothermia; 55% of hypothermia
reports are for atypical antipsychotics. Schizophrenia was
the most prevalent diagnosis in the case reports.
Conclusion: Especially in admitted patients who are not able
to control their own environment or physical status, frequent
measurements of body temperature (with a thermometer that
can measure low body temperatures) must be performed in
order to detect developing hypothermia
Comparative Omics-Driven Genome Annotation Refinement: Application across Yersiniae
Genome sequencing continues to be a rapidly evolving technology, yet most downstream aspects of genome annotation pipelines remain relatively stable or are even being abandoned. The annotation process is now performed almost exclusively in an automated fashion to balance the large number of sequences generated. One possible way of reducing errors inherent to automated computational annotations is to apply data from omics measurements (i.e. transcriptional and proteomic) to the un-annotated genome with a proteogenomic-based approach. Here, the concept of annotation refinement has been extended to include a comparative assessment of genomes across closely related species. Transcriptomic and proteomic data derived from highly similar pathogenic Yersiniae (Y. pestis CO92, Y. pestis Pestoides F, and Y. pseudotuberculosis PB1/+) was used to demonstrate a comprehensive comparative omic-based annotation methodology. Peptide and oligo measurements experimentally validated the expression of nearly 40% of each strain's predicted proteome and revealed the identification of 28 novel and 68 incorrect (i.e., observed frameshifts, extended start sites, and translated pseudogenes) protein-coding sequences within the three current genome annotations. Gene loss is presumed to play a major role in Y. pestis acquiring its niche as a virulent pathogen, thus the discovery of many translated pseudogenes, including the insertion-ablated argD, underscores a need for functional analyses to investigate hypotheses related to divergence. Refinements included the discovery of a seemingly essential ribosomal protein, several virulence-associated factors, a transcriptional regulator, and many hypothetical proteins that were missed during annotation
Modified Needle-Tip PcrV Proteins Reveal Distinct Phenotypes Relevant to the Control of Type III Secretion and Intoxication by Pseudomonas aeruginosa
The type III secretion system (T3SS) is employed to deliver effector proteins to the cytosol of eukaryotic hosts by multiple species of Gram-negative bacteria, including Pseudomonas aeruginosa. Translocation of effectors is dependent on the proteins encoded by the pcrGVHpopBD operon. These proteins form a T3S translocator complex, composed of a needle-tip complex (PcrV), translocons (PopB and PopD), and chaperones (PcrG and PcrH). PcrV mediates the folding and insertion of PopB/PopD in host plasmic membranes, where assembled translocons form a translocation channel. Assembly of this complex and delivery of effectors through this machinery is tightly controlled by PcrV, yet the multifunctional aspects of this molecule have not been defined. In addition, PcrV is a protective antigen for P. aeruginosa infection as is the ortholog, LcrV, for Yersinia. We constructed PcrV derivatives containing in-frame linker insertions and site-specific mutations. The expression of these derivatives was regulated by a T3S-specific promoter in a pcrV-null mutant of PA103. Nine derivatives disrupted the regulation of effector secretion and constitutively released an effector protein into growth medium. Three of these regulatory mutants, in which the linker was inserted in the N-terminal globular domain, were competent for the translocation of a cytotoxin, ExoU, into eukaryotic host cells. We also isolated strains expressing a delayed-toxicity phenotype, which secrete translocators slowly despite the normal level of effector secretion. Most of the cytotoxic translocation-competent strains retained the protective epitope of PcrV derivatives, and Mab166 was able to protect erythrocytes during infection with these strains. The use of defined PcrV derivatives possessing distinct phenotypes may lead to a better understanding of the functional aspects of T3 needle-tip proteins and the development of therapeutic agents or vaccines targeting T3SS-mediated intoxication
Cell Membrane Is Impaired, Accompanied by Enhanced Type III Secretion System Expression in Yersinia pestis Deficient in RovA Regulator
BACKGROUND: In the enteropathogenic Yersinia species, RovA regulates the expression of invasin, which is important for enteropathogenic pathogenesis but is inactivated in Yersinia pestis. Investigation of the RovA regulon in Y. pestis at 26 °C has revealed that RovA is a global regulator that contributes to virulence in part by the direct regulation of psaEFABC. However, the regulatory roles of RovA in Y. pestis at 37 °C, which allows most virulence factors in mammalian hosts to be expressed, are still poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: The transcriptional profile of an in-frame rovA mutant of Y. pestis biovar Microtus strain 201 was analyzed under type III secretion system (T3SS) induction conditions using microarray techniques, and it was revealed that many cell-envelope and transport/binding proteins were differentially expressed in the ΔrovA mutant. Most noticeably, many of the T3SS genes, including operons encoding the translocon, needle and Yop (Yersinia outer protein) effectors, were significantly up-regulated. Analysis of Yop proteins confirmed that YopE and YopJ were also expressed in greater amounts in the mutant. However, electrophoresis mobility shift assay results demonstrated that the His-RovA protein could not bind to the promoter sequences of the T3SS genes, suggesting that an indirect regulatory mechanism is involved. Transmission electron microscopy analysis indicated that there are small loose electron dense particle-like structures that surround the outer membrane of the mutant cells. The bacterial membrane permeability to CFSE (carboxyfluorescein diacetate succinimidyl ester) was significantly decreased in the ΔrovA mutant compared to the wild-type strain. Taken together, these results revealed the improper construction and dysfunction of the membrane in the ΔrovA mutant. CONCLUSIONS/SIGNIFICANCE: We demonstrated that the RovA regulator plays critical roles in the construction and functioning of the bacterial membrane, which sheds considerable light on the regulatory functions of RovA in antibiotic resistance and environmental adaptation. The expression of T3SS was upregulated in the ΔrovA mutant through an indirect regulatory mechanism, which is possibly related to the altered membrane construction in the mutant
- …