693 research outputs found
On the Decoding of Polar Codes on Permuted Factor Graphs
Polar codes are a channel coding scheme for the next generation of wireless
communications standard (5G). The belief propagation (BP) decoder allows for
parallel decoding of polar codes, making it suitable for high throughput
applications. However, the error-correction performance of polar codes under BP
decoding is far from the requirements of 5G. It has been shown that the
error-correction performance of BP can be improved if the decoding is performed
on multiple permuted factor graphs of polar codes. However, a different BP
decoding scheduling is required for each factor graph permutation which results
in the design of a different decoder for each permutation. Moreover, the
selection of the different factor graph permutations is at random, which
prevents the decoder to achieve a desirable error-correction performance with a
small number of permutations. In this paper, we first show that the
permutations on the factor graph can be mapped into suitable permutations on
the codeword positions. As a result, we can make use of a single decoder for
all the permutations. In addition, we introduce a method to construct a set of
predetermined permutations which can provide the correct codeword if the
decoding fails on the original permutation. We show that for the 5G polar code
of length , the error-correction performance of the proposed decoder is
more than dB better than that of the BP decoder with the same number of
random permutations at the frame error rate of
Rate-Flexible Fast Polar Decoders
Polar codes have gained extensive attention during the past few years and
recently they have been selected for the next generation of wireless
communications standards (5G). Successive-cancellation-based (SC-based)
decoders, such as SC list (SCL) and SC flip (SCF), provide a reasonable error
performance for polar codes at the cost of low decoding speed. Fast SC-based
decoders, such as Fast-SSC, Fast-SSCL, and Fast-SSCF, identify the special
constituent codes in a polar code graph off-line, produce a list of operations,
store the list in memory, and feed the list to the decoder to decode the
constituent codes in order efficiently, thus increasing the decoding speed.
However, the list of operations is dependent on the code rate and as the rate
changes, a new list is produced, making fast SC-based decoders not
rate-flexible. In this paper, we propose a completely rate-flexible fast
SC-based decoder by creating the list of operations directly in hardware, with
low implementation complexity. We further propose a hardware architecture
implementing the proposed method and show that the area occupation of the
rate-flexible fast SC-based decoder in this paper is only of the total
area of the memory-based base-line decoder when 5G code rates are supported
Partitioned List Decoding of Polar Codes: Analysis and Improvement of Finite Length Performance
Polar codes represent one of the major recent breakthroughs in coding theory
and, because of their attractive features, they have been selected for the
incoming 5G standard. As such, a lot of attention has been devoted to the
development of decoding algorithms with good error performance and efficient
hardware implementation. One of the leading candidates in this regard is
represented by successive-cancellation list (SCL) decoding. However, its
hardware implementation requires a large amount of memory. Recently, a
partitioned SCL (PSCL) decoder has been proposed to significantly reduce the
memory consumption. In this paper, we examine the paradigm of PSCL decoding
from both theoretical and practical standpoints: (i) by changing the
construction of the code, we are able to improve the performance at no
additional computational, latency or memory cost, (ii) we present an optimal
scheme to allocate cyclic redundancy checks (CRCs), and (iii) we provide an
upper bound on the list size that allows MAP performance.Comment: 2017 IEEE Global Communications Conference (GLOBECOM
Intrinsic susceptibility and bond defects in the novel 2D frustrated antiferromagnet BaSnZnCrGaO
We present microscopic and macroscopic magnetic properties of the highly
frustrated antiferromagnet BaSnZnCrGaO,
respectively probed with NMR and SQUID experiments. The -variation of the
intrinsic susceptibility of the Cr frustrated kagom\'{e} bilayer,
, displays a maximum around 45 K. The dilution of the magnetic
lattice has been studied in detail for . Novel dilution
independent defects, likely related with magnetic bond disorder, are evidenced
and discussed. We compare our results to SrCrGaO. Both
bond defects and spin vacancies do not affect the average susceptibility of the
kagom\'{e} bilayers.Comment: Published in Phys. Rev. Lett. 92, 217202 (2004). Only minor changes
as compared to previous version. 4 pages, 4 figure
BioWorkbench: A High-Performance Framework for Managing and Analyzing Bioinformatics Experiments
Advances in sequencing techniques have led to exponential growth in
biological data, demanding the development of large-scale bioinformatics
experiments. Because these experiments are computation- and data-intensive,
they require high-performance computing (HPC) techniques and can benefit from
specialized technologies such as Scientific Workflow Management Systems (SWfMS)
and databases. In this work, we present BioWorkbench, a framework for managing
and analyzing bioinformatics experiments. This framework automatically collects
provenance data, including both performance data from workflow execution and
data from the scientific domain of the workflow application. Provenance data
can be analyzed through a web application that abstracts a set of queries to
the provenance database, simplifying access to provenance information. We
evaluate BioWorkbench using three case studies: SwiftPhylo, a phylogenetic tree
assembly workflow; SwiftGECKO, a comparative genomics workflow; and RASflow, a
RASopathy analysis workflow. We analyze each workflow from both computational
and scientific domain perspectives, by using queries to a provenance and
annotation database. Some of these queries are available as a pre-built feature
of the BioWorkbench web application. Through the provenance data, we show that
the framework is scalable and achieves high-performance, reducing up to 98% of
the case studies execution time. We also show how the application of machine
learning techniques can enrich the analysis process
Evidence for two disparate spin dynamic regimes within Fe-substituted La0.7 Pb0.3 (Mn1-x Fex) O3 (0≤x≤0.2) colossal magnetoresistive manganites: Neutron spin-echo measurements
10 págs.; 7 figs.; 1 tab. ; PACS number s : 75.25. z, 75.30.Ds, 75.40.Gb, 75.47.GkThe spin dynamics of substituted colossal magnetoresistive (CMR) manganites of general formula La0.7 Pb0.3 (Mn1-x Fex) O3, 0≤x≤0.2 is investigated by means of neutron spin-echo measurements. Substitution of Mn by Fe leads to a strong decrease of the temperature of macroscopic magnetic long-range ordering with a concomitant enhancement of the CMR effect. For x=0.2, a long-range-ordered state is not achieved as a result of the increase in antiferromagnetic interactions brought forward by Fe+3 -Mn couplings. The results display two relaxations having well separated decay constants. A fast process with a relaxation time of about 10 ps within the paramagnetic phase is found for all compositions. It shows a remarkably strong dependence with temperature and sample composition as the apparent activation energy for spin diffusion as well as the preexponential term exemplify. The physical origin of such a fast relaxation is assigned to heavily damped or overdamped spin waves (spin diffusion) on the basis of some signatures of excitations having finite frequencies found for the parent compound La0.7 Pb0.3 Mn O3 at temperatures just below Tc, together with preliminary data on the effect of Fe doping on the stiffness constant. A slower relaxation is present for all compositions. Its temperature dependence follows the behavior of the macroscopic magnetization, and its intensity grows within the ordered ferromagnetic state. Its physical origin is ascribed to collective reorientation of nanoscale ferromagnetic domains on the basis of the wave-vector dependence of its relaxation rate and amplitude. © 2007 The American Physical Society.J.G. and J.M.B. thank the Spanish Ministerio de Educacion
y Ciencia for financial support under research Grant No.
MAT2005-0686-C04-03. F.J.B. and P.R. acknowledge financial
support from the European Commission through NMI3
to carry out preliminary measurements at the FZJ facilities.Peer Reviewe
Childhood trauma associated with increased post-awakening cortisol in major depressive disorder
Background: Enhanced post-awakening cortisol may serve as a biological marker for individuals with major depressive disorder. However, studies comparing post-awakening cortisol between patients with major depressive disorder (MDD) and healthy controls have produced conflicting findings. The aim of this study was to investigate whether this inconsistency could be due to the effects of childhood trauma.
Methods: A total of N = 112 patients with MDD and healthy controls were divided into four groups according to the presence of childhood trauma. Saliva samples were collected at awakening and 15, 30, 45, and 60 min later. The total cortisol output and the cortisol awakening response (CAR) were calculated.
Results: The total post-awakening cortisol output was significantly higher in patients with MDD as compared to healthy controls, but only in those individuals reporting childhood trauma. The four groups did not differ regarding the CAR.
Conclusions: Elevated post-awakening cortisol in MDD may be confined to those with a history of early life stress. Tailoring and/or augmenting of currently available treatments may be required to meet the specific needs of this population
Experimental evidence of a cluster-glass transition on the colossal magnetoresistance manganite La0.7Pb0.3(Mn0.9Fe0.1)O3
4 págs.; 3 figs. ; PACS numberssd: 75.40.2s, 75.47.2m, 61.12.Ex, 61.46.1wNeutron small angle scattering on a colossal magnetoresistance material shows clear signatures of a rise in characteristic length of paramagnetic fluctuations as the maximum of dc susceptibility is approached from high temperatures. The phenomenon is accompanied by a rise in intensity of a broad peak that appears at wave vectors of ≈ 0.025-1, and this is interpreted as a fingerprint of the onset of ferromagnetic ordering due to intercluster magnetic interactions. © 2005 The American Physical Society.Peer Reviewe
Influence of pH, bleaching agents, and acid etching on surface wear of bovine enamel
ABSTRACT Development of new materials for tooth bleaching justifies the need for studies to evaluate the changes in the enamel surface caused by different bleaching protocols. Objective The aim of this study was to evaluate the bovine dental enamel wear in function of different bleaching gel protocols, acid etching and pH variation. Material and Methods Sixty fragments of bovine teeth were cut, obtaining a control and test areas. In the test area, one half received etching followed by a bleaching gel application, and the other half, only the bleaching gel. The fragments were randomly divided into six groups (n=10), each one received one bleaching session with five hydrogen peroxide gel applications of 8 min, activated with hybrid light, diode laser/blue LED (HL) or diode laser/violet LED (VHL) (experimental): Control (C); 35% Total Blanc Office (TBO35HL); 35% Lase Peroxide Sensy (LPS35HL); 25% Lase Peroxide Sensy II (LPS25HL); 15% Lase Peroxide Lite (LPL15HL); and 10% hydrogen peroxide (experimental) (EXP10VHL). pH values were determined by a pHmeter at the initial and final time periods. Specimens were stored, subjected to simulated brushing cycles, and the superficial wear was determined (μm). ANOVA and Tukey´s tests were applied (α=0.05). Results The pH showed a slight decrease, except for Group LPL15HL. Group LPS25HL showed the highest degree of wear, with and without etching. Conclusion There was a decrease from the initial to the final pH. Different bleaching gels were able to increase the surface wear values after simulated brushing. Acid etching before bleaching increased surface wear values in all groups
- …