551 research outputs found

    Internal Stresses and Formation of Switchable Nanowires at Thin Silica Film Edge

    Full text link
    At vertical edges, thin films of silicon oxide (SiO_{2-x}) contain semiconductive c-Si layered nanocrystals (Si NC) embedded in and supported by an insulating g-SiO2 matrix. Tour et al. have shown that a trenched thin film geometry enables the NC to form switchable nanowires (SNW) when trained by an applied field. The field required to form SNW decreases rapidly within a few cycles, or by annealing at 600 C in even fewer cycles, and is stable to 700C. Here we describe the intrinsic evolution of Si NC and SNW in terms of the competition between internal stresses and electro-osmosis. The analysis relies heavily on experimental data from a wide range of thin film studies, and it explains why a vertical edge across the planar Si-SiOx interface is necessary to form SNW. The discussion also shows that the formation mechanisms of Si NC and Si/SiO_{2-x} SNW are intrinsic and result from optimization of nanowire conductivity in the presence of residual host misfit stresses

    Verification of band offsets and electron effective masses in GaAsN/GaAs quantum wells : Spectroscopic experiment versus 10-band k.p modeling

    Get PDF
    Optical transitions in GaAs1-xNx/GaAs quantum wells (QWs) have been probed by two complementary techniques, modulation spectroscopy in a form of photoreflectance and surface photovoltage spectroscopy. Transition energies in QWs of various widths and N contents have been compared with the results of band structure calculations based on the 10-band k.p Hamiltonian. Due to the observation of higher order transitions in the measured spectra, the band gap discontinuities at the GaAsN/GaAs interface and the electron effective masses could be determined, both treated as semi-free parameters to get the best matching between the theoretical and experimental energies. We have obtained the chemical conduction band offset values of 86% for x = 1.2% and 83% for x = 2.2%, respectively. For these determined band offsets, the electron effective masses equal to about 0.09 m(o) in QWs with 1.2% N and 0.15 m(o) for the case of larger N content of 2.2%.Publisher PDFPeer reviewe

    Spin coherence of holes in GaAs/AlGaAs quantum wells

    Full text link
    The carrier spin coherence in a p-doped GaAs/(Al,Ga)As quantum well with a diluted hole gas has been studied by picosecond pump-probe Kerr rotation with an in-plane magnetic field. For resonant optical excitation of the positively charged exciton the spin precession shows two types of oscillations. Fast oscillating electron spin beats decay with the radiative lifetime of the charged exciton of 50 ps. Long lived spin coherence of the holes with dephasing times up to 650 ps. The spin dephasing time as well as the in-plane hole g factor show strong temperature dependence, underlining the importance of hole localization at cryogenic temperatures.Comment: 5 pages, 4 figures in PostScript forma

    On the nature of the stretched exponential photoluminescence decay for silicon nanocrystals

    Get PDF
    The influence of hydrogen rate on optical properties of silicon nanocrystals deposited by sputtering method was studied by means of time-resolved photoluminescence spectroscopy as well as transmission and reflection measurements. It was found that photoluminescence decay is strongly non-single exponential and can be described by the stretched exponential function. It was also shown that effective decay rate probability density function may be recovered by means of Stehfest algorithm. Moreover, it was proposed that the observed broadening of obtained decay rate distributions reflects the disorder in the samples
    • …
    corecore