598 research outputs found

    PDF model based on Langevin equation for polydispersed two-phase flows applied to a bluff-body gas-solid flow,

    Full text link
    The aim of the paper is to discuss the main characteristics of a complete theoretical and numerical model for turbulent polydispersed two-phase flows, pointing out some specific issues. The theoretical details of the model have already been presented [Minier and Peirano, Physics Reports, Vol. 352/1-3, 2001 ]. Consequently, the present work is mainly focused on complementary aspects, that are often overlooked and that require particular attention. In particular, the following points are analysed : the necessity to add an extra term in the equation for the velocity of the fluid seen in the case of twoway coupling, the theoretical and numerical evaluations of particle averages and the fulfilment of the particle mass-continuity constraint. The theoretical model is developed within the PDF formalism. The important-physical choice of the state vector variables is first discussed and the model is then expressed as a stochastic differential equation (SDE) written in continuous time (Langevin equations) for the velocity of the fluid seen. The interests and limitations of Langevin equations, compared to the single-phase case, are reviewed. From the numerical point of view, the model corresponds to an hybrid Eulerian/Lagrangian approach where the fluid and particle phases are simulated by different methods. Important aspects of the Monte Carlo particle/mesh numerical method are emphasised. Finally, the complete model is validated and its performance is assessed by simulating a bluff-body case with an important recirculation zone and in which two-way coupling is noticeable.Comment: 23 pages, 10 figure

    NG7538 IRS1 N: modeling a circumstellar maser disk

    Full text link
    We present an edge-on Keplerian disk model to explain the main component of the 12.2 and 6.7 GHz methanol maser emission detected toward NGC7538-IRS1 N. The brightness distribution and spectrum of the line of bright masers are successfully modeled with high amplification of background radio continuum emission along velocity coherent paths through a maser disk. The bend seen in the position-velocity diagram is a characteristic signature of differentially rotating disks. For a central mass of 30 solar masses, suggested by other observations, our model fixes the masing disk to have inner and outer radii of about 270 AU and 750 AU.Comment: To appear in The Proceedings of the 2004 European Workshop: "Dense Molecular Gas around Protostars and in Galatic Nuclei", Eds. Y. Hagiwara, W.A. Baan, H.J. van Langevelde, 2004, a special issue of ApSS, Kluwe

    VLBA imaging of a periodic 12.2 GHz methanol maser flare in G9.62+0.20E

    Full text link
    The class II methanol maser source G9.62+0.20E undergoes periodic flares at both 6.7 and 12.2 GHz. The flare starting in 2001 October was observed at seven epochs over three months using the VLBA at 12.2 GHz. High angular resolution images (beam size \sim 1.7 x 0.6 mas) were obtained, enabling us to observe changes in 16 individual maser components. It was found that while existing maser spots increased in flux density, no new spots developed and no changes in morphology were observed. This rules out any mechanism which disturbs the masing region itself, implying that the flares are caused by a change in either the seed or pump photon levels. A time delay of 1--2 weeks was observed between groups of maser features. These delays can be explained by light travel time between maser groups. The regularity of the flares can possibly be explained by a binary system.Comment: 11 pages, accepted for publication in MNRA

    Hamlet and Poetry: Introduction

    Get PDF

    Opportunities for maser studies with the Square Kilometre Array

    Full text link
    The Square Kilometre Array (SKA) is the radio telescope of the next generation, providing an increase in sensitivity and angular resolution of two orders of magnitude over existing telescopes. Currently, the SKA is expected to span the frequency range 0.1-25 GHz with capabilities including a wide field-of-view and measurement of polarised emission. Such a telescope has enormous potential for testing fundamental physical laws and producing transformational discoveries. Important science goals include using H2O megamasers to make precise estimates of H0, which will anchor the extragalactic distance scale, and to probe the central structures of accretion disks around supermassive black holes in AGNs, to study OH megamasers associated with extreme starburst activity in distant galaxies and to study with unprecedented precision molecular gas and star formation in our Galaxy.Comment: 5 pages, to appear in: IAU Symposium 242 Astrophysical Masers and their Environment

    19F NMR study of ligand dynamics in carboxylate-bridged diiron(II) complexes supported by a macrocyclic ligand

    Get PDF
    A series of asymmetrically carboxylate-bridged diiron(II) complexes featuring fluorine atoms as NMR spectroscopic probes, [Fe[subscript 2](PIM)(Ar[superscript 4F-Ph]CO[subscript 2])[subscript 2]] (10), [Fe[subscript 2](F[subscript 2]PIM)(Ar[superscript Tol]CO[subscript 2])[subscript 2]] (11), and [Fe[subscript 2](F[subscript 2]PIM)(Ar[superscript 4F-Ph]CO[subscript 2])[superscript 2]] (12), were prepared and characterized by X-ray crystallography, Mössbauer spectroscopy, and VT [superscript19]F NMR spectroscopy. These complexes are part of a rare family of syn-N diiron(II) complexes, [Fe[subscript 2](X[subscript 2]PIM)(RCO[subscript 2])[superscript 2]], that are structurally very similar to the active site of the hydroxylase enzyme component of reduced methane monooxygenase (MMOH[subscript red]). Solution characterization of these complexes demonstrates that they undergo intramolecular carboxylate rearrangements, or carboxylate shifts, a dynamic feature relevant to the reactivity of the diiron centers in bacterial multicomponent monooxygenasesNational Institute of General Medical Sciences (U.S.) (Grant GM 32114)National Science Foundation (U.S.). Graduate Research Fellowship Program (Grant 1122374

    The Extended Methanol Maser Emission in W51

    Full text link
    The European VLBI Network (EVN) has been used to make phase referenced, wide-field (several arcminute) spectral line observations of the 6.7-GHz methanol maser emission towards W51. In the W51main region, the bulk of the methanol is offset from an UCHII region. This probably indicates the methanol emission arises at the interface of the expanding UCHII region and not from an edge-on circumstellar disc, as previously suggested. Near the W51 IRS2 region, the methanol emission is associated with a very compact, extremely embedded source supporting the hypothesis that methanol masers trace the earliest stages of massive star formation. As well as these two previously well studied sites of star formation, many previously unknown regions star formation are detected, demonstrating that methanol masers are powerful means of detection young massive stars.Comment: 5 pages, 3 figure

    Dynamics of the 6.7 and 12.2 GHz methanol masers around Cepheus A HW2

    Full text link
    The 6.7 GHz methanol maser is exclusively associated with high-mass star formation. However, it remains unclear what structures harbour the methanol masers. Cepheus A is one of the closest regions of massive star formation, making it an excellent candidate for detailed studies. We determine the dynamics of maser spots in the high-mass star-forming region Cepheus A in order to infer where and when the maser emission occurs. Very long baseline interferometry (VLBI) observations of the 6.7 and 12.2 GHz methanol masers allows for mapping their spatial and velocity distribution. Phase-referencing is used to determine the astrometric positions of the maser emission, and multi-epoch observations can reveal 3D motions. The 6.7 GHz methanol masers are found in a filamentary structure over ~1350 AU, straddling the waist of the radio jet HW2. The positions agree well with previous observations of both the 6.7 and 12.2 GHz methanol masers. The velocity field of the maser spots does not show any sign of rotation, but is instead consistent with an infall signature. The 12.2 GHz methanol masers are closely associated with the 6.7 GHz methanol masers, and the parallax that we derive confirms previous measurements. We show that the methanol maser emission very likely arises in a shock interface in the equatorial region of Cepheus A HW2 and presents a model in which the maser emission occurs between the infalling gas and the accretion disk/process.Comment: 9 pages, 5 figures; accepted for publication in Astronomy and Astrophysic
    corecore