1,616 research outputs found

    Magnetic-Field-Induced 4f-Octupole in CeB6 Probed by Resonant X-ray Diffraction

    Get PDF
    CeB6, a typical Gamma_8-quartet system, exhibits a mysterious antiferroquadrupolar ordered phase in magnetic fields, which is considered as originating from the T_{xyz}-type magnetic octupole moment induced by the field. By resonant x-ray diffraction in magnetic fields, we have verified that the T_{xyz}-type octupole is indeed induced in the 4f-orbital of Ce with a propagation vector (1/2, 1/2, 1/2), thereby supporting the theory. We observed an asymmetric field dependence of the intensity for an electric quadrupole (E2) resonance when the field was reversed, and extracted a field dependence of the octupole by utilizing the interference with an electric dipole (E1) resonance. The result is in good agreement with that of the NMR-line splitting, which reflects the transferred hyperfine field at the Boron nucleus from the anisotropic spin distribution of Ce with an O_{xy}-type quadrupole. The field-reversal method used in the present study opens up the possibility of being widely applied to other multipole ordering systems such as NpO2, Ce_{x}La_{1-x}B_{6}, SmRu_{4}P_{12}, and so on.Comment: 5 pages, 4 figures, submitte

    Evidence for short-range antiferromagnetic fluctuations in Kondo-insulating YbB12

    Get PDF
    The spin dynamics of mixed-valence YbB12 has been studied by inelastic neutron scattering on a high-quality single crystal. In the Kondo-insulating regime realized at low temperature, the spectra exhibit a spin-gap structure with two sharp, dispersive, in-gap excitations at E = 14.5 and approximately 20 meV. The lower mode is shown to be associated with short-range correlations near the antiferromagnetic wave vector q0 = (1/2, 1/2, 1/2). Its properties are in overall agreement with those expected for a "spin exciton'' branch in an indirect hybridization gap semiconductor.Comment: 4 pages, 4 figures ; submitted to Physical Review Letter

    On the porosity of barrier layers

    Get PDF
    Barrier layers are defined as the layer between the pycnocline and the thermocline when the latter are different as a result of salinity stratification. We present a revisited 2-degree resolution global climatology of monthly mean oceanic Barrier Layer (BL) thickness first proposed by de Boyer Montégut et al. (2007). In addition to using an extended data set, we present a modified computation method that addresses the observed porosity of BLs. We name porosity the fact that barrier layers distribution can, in some areas, be very uneven regarding the space and time scales that are considered. This implies an intermittent alteration of air-sea exchanges by the BL. Therefore, it may have important consequences for the climatic impact of BLs. Differences between the two computation methods are small for robust BLs that are formed by large-scale processes. However, the former approach can significantly underestimate the thickness of short and/or localized barrier layers. This is especially the case for barrier layers formed by mesoscale mechanisms (under the intertropical convergence zone for example and along western boundary currents) and equatorward of the sea surface salinity subtropical maxima. Complete characterisation of regional BL dynamics therefore requires a description of the robustness of BL distribution to assess the overall impact of BLs on the process of heat exchange between the ocean interior and the atmosphere

    Spontaneous deformation of the Fermi surface due to strong correlation in the two-dimensional t-J model

    Full text link
    Fermi surface of the two-dimensional t-J model is studied using the variational Monte Carlo method. We study the Gutzwiller projected d-wave superconducting state with an additional variational parameter t'_v corresponding to the next-nearest neighbor hopping term. It is found that the finite t'_v<0 gives the lowest variational energy in the wide range of hole-doping rates. The obtained momentum distribution function shows that the Fermi surface deforms spontaneously. It is also shown that the van Hove singularity is always located very close to the Fermi energy. Using the Gutzwiller approximation, we show that this spontaneous deformation is due to the Gutzwiller projection operator or the strong correlation.Comment: 4 pages, 3 eps figures, revte

    Long-range order and low-energy magnetic excitations in CeRu2Al10

    Full text link
    The nature of the unconventional ordered phase occurring in CeRu2Al10 below T0 = 27 K was investigated by neutron scattering. Powder diffraction patterns show clear superstructure peaks corresponding to forbidden (h + k)-odd reflections of the Cmcm space group. Inelastic neutron scattering experiments further reveal a pronounced magnetic excitation developing in the ordered phase at an energy of 8 meV.Comment: 5 pages; 4 figure

    High-field magnetization and magnetic phase transition in CeOs2Al10

    Full text link
    We have studied the magnetization of CeOs2Al10 in high magnetic fields up to 55 T for H // a and constructed the magnetic phase diagram for H // a. The magnetization curve shows a concave H dependence below T_max \sim40 K which is higher than the transition temperature T_0 \sim29 K. The magnetic susceptibility along the a-axis shows a smooth and continuous decrease down to \sim20 K below T_max \sim40 K without showing an anomaly at T_0. From these two results, a Kondo singlet is formed below T_max and coexists with the antiferro magnetic order below T_0. We also propose that the larger suppression of the spin degrees of freedom along the a-axis than along the c-axis below T_max is associated with the origin of the antiferro magnetic component.Comment: 4 pages, 4 figures, to appear in Phys. Rev. B, Rapid Commu
    corecore