621 research outputs found

    Summit on cell therapy for cancer: The importance of the interaction of multiple disciplines to advance clinical therapy

    Get PDF
    The field of cellular therapy of cancer is moving quickly and the issues involved with its advancement are complex and wide ranging. The growing clinical applications and success of adoptive cellular therapy of cancer has been due to the rapid evolution of immunology, cancer biology, gene therapy and stem cell biology and the translation of advances in these fields from the research laboratory to the clinic. The continued development of this field is dependent on the exchange of ideas across these diverse disciplines, the testing of new ideas in the research laboratory and in animal models, the development of new cellular therapies and GMP methods to produce these therapies, and the testing of new adoptive cell therapies in clinical trials. The Summit on Cell Therapy for Cancer to held on November 1 and 2, 2011 at the National Institutes of Health (NIH) campus will include a mix of perspectives, concepts and ideas related to adoptive cellular therapy that are not normally presented together at any single meeting. This novel assembly will generate new ideas and new collaborations and possibly increase the rate of advancement of this field

    Immunological and Clinical Effects of Vaccines Targeting p53-Overexpressing Malignancies

    Get PDF
    Approximately 50% of human malignancies carry p53 mutations, which makes it a potential antigenic target for cancer immunotherapy. Adoptive transfer with p53-specific cytotoxic T-lymphocytes (CTL) and CD4+ T-helper cells eradicates p53-overexpressing tumors in mice. Furthermore, p53 antibodies and p53-specific CTLs can be detected in cancer patients, indicating that p53 is immunogenic. Based on these results, clinical trials were initiated. In this paper, we review immunological and clinical responses observed in cancer patients vaccinated with p53 targeting vaccines. In most trials, p53-specific vaccine-induced immunological responses were observed. Unfortunately, no clinical responses with significant reduction of tumor-burden have occurred. We will elaborate on possible explanations for this lack of clinical effectiveness. In the second part of this paper, we summarize several immunopotentiating combination strategies suitable for clinical use. In our opinion, future p53-vaccine studies should focus on addition of these immunopotentiating regimens to achieve clinically effective therapeutic vaccination strategies for cancer patients

    Arthritis by autoreactive T cell lines obtained from rats after injection of intestinal bacterial cell wall fragments

    Get PDF
    __Abstract__ T cell lines (B13, B19) were isolated from the lymph nodes of Lewis rats 12 days after an arthritogenic injection of cell wall fragments of Eubacterium aerofaciens (ECW), a major resident of the human intestinal flora. These cell wall fragments consist of peptidoglycan polysaccharide complexes (PPC). The cell lines that bear the helper phenotype were arthritogenic in knee or ankle joints upon intravenous injection into irradiated Lewis recipients. B13 was, however, not arthritogenic in irradiated F344 recipients that are largely RT1 identical. The arthritis induced in the knee joints of the irradiated Lewis rats was clearly shown by a 99mtechnetium-pertechnetate scanning technique and was confirmed histologically. In vitro the cell lines showed a proliferative response after stimulation with syngeneic spleen cells alone. The proliferation was significantly higher when bacterial PPC, isolated in soluble form from normal feces or ileostomy fluid were added. Recognition by B13 appeared to be MHC class II restricted. These results show that autoreactive T cell lines can be isolated from rats after injection of bacterial cell wall antigens and that these cell lines can be arthritogenic. This suggests a role for autoreactive T cells in the induction of bacterial cell wall arthritis and might give a clue for the arthritogenic properties of the normal human intestinal flora

    Antigen-specific active immunotherapy for ovarian cancer

    Get PDF
    BACKGROUND: This is the second update of the review first published in the Cochrane Library (2010, Issue 2) and later updated (2014, Issue 9).Despite advances in chemotherapy, the prognosis of ovarian cancer remains poor. Antigen-specific active immunotherapy aims to induce tumour antigen-specific anti-tumour immune responses as an alternative treatment for ovarian cancer. OBJECTIVES: Primary objective• To assess the clinical efficacy of antigen-specific active immunotherapy for the treatment of ovarian cancer as evaluated by tumour response measured by Response Evaluation Criteria In Solid Tumors (RECIST) and/or cancer antigen (CA)-125 levels, response to post-immunotherapy treatment, and survival differences◦ In addition, we recorded the numbers of observed antigen-specific humoral and cellular responsesSecondary objective• To establish which combinations of immunotherapeutic strategies with tumour antigens provide the best immunological and clinical results SEARCH METHODS: For the previous version of this review, we performed a systematic search of the Cochrane Central Register of Controlled Trials (CENTRAL; 2009, Issue 3), in the Cochrane Library, the Cochrane Gynaecological Cancer Group Specialised Register, MEDLINE and Embase databases, and clinicaltrials.gov (1966 to July 2009). We also conducted handsearches of the proceedings of relevant annual meetings (1996 to July 2009).For the first update of this review, we extended the searches to October 2013, and for this update, we extended the searches to July 2017. SELECTION CRITERIA: We searched for randomised controlled trials (RCTs), as well as non-randomised studies (NRSs), that included participants with epithelial ovarian cancer, irrespective of disease stage, who were treated with antigen-specific active immunotherapy, irrespective of type of vaccine, antigen used, adjuvant used, route of vaccination, treatment schedule, and reported clinical or immunological outcomes. DATA COLLECTION AND ANALYSIS: Two reviews authors independently extracted the data. We evaluated the risk of bias for RCTs according to standard methodological procedures expected by Cochrane, and for NRSs by using a selection of quality domains deemed best applicable to the NRS. MAIN RESULTS: We included 67 studies (representing 3632 women with epithelial ovarian cancer). The most striking observations of this review address the lack of uniformity in conduct and reporting of early-phase immunotherapy studies. Response definitions show substantial variation between trials, which makes comparison of trial results unreliable. Information on adverse events is frequently limited. Furthermore, reports of both RCTs and NRSs frequently lack the relevant information necessary for risk of bias assessment. Therefore, we cannot rule out serious biases in most of the included trials. However, selection, attrition, and selective reporting biases are likely to have affected the studies included in this review. GRADE ratings were high only for survival; for other primary outcomes, GRADE ratings were very low.The largest body of evidence is currently available for CA-125-targeted antibody therapy (17 studies, 2347 participants; very low-certainty evidence). Non-randomised studies of CA-125-targeted antibody therapy suggest improved survival among humoral and/or cellular responders, with only moderate adverse events. However, four large randomised placebo-controlled trials did not show any clinical benefit, despite induction of immune responses in approximately 60% of participants. Time to relapse with CA-125 monoclonal antibody versus placebo, respectively, ranged from 10.3 to 18.9 months versus 10.3 to 13 months (six RCTs, 1882 participants; high-certainty evidence). Only one RCT provided data on overall survival, reporting rates of 80% in both treatment and placebo groups (three RCTs, 1062 participants; high-certainty evidence). Other small studies targeting many different tumour antigens have presented promising immunological results. As these strategies have not yet been tested in RCTs, no reliable inferences about clinical efficacy can be made. Given the promising immunological results and the limited side effects and toxicity reported, exploration of clinical efficacy in large well-designed RCTs may be worthwhile. AUTHORS' CONCLUSIONS: We conclude that despite promising immunological responses, no clinically effective antigen-specific active immunotherapy is yet available for ovarian cancer. Results should be interpreted cautiously, as review authors found a significant dearth of relevant information for assessment of risk of bias in both RCTs and NRSs

    Human Papillomavirus Deregulates the Response of a Cellular Network Comprising of Chemotactic and Proinflammatory Genes

    Get PDF
    Despite the presence of intracellular pathogen recognition receptors that allow infected cells to attract the immune system, undifferentiated keratinocytes (KCs) are the main targets for latent infection with high-risk human papilloma viruses (hrHPVs). HPV infections are transient but on average last for more than one year suggesting that HPV has developed means to evade host immunity. To understand how HPV persists, we studied the innate immune response of undifferentiated human KCs harboring episomal copies of HPV16 and 18 by genome-wide expression profiling. Our data showed that the expression of the different virus-sensing receptors was not affected by the presence of HPV. Poly(I:C) stimulation of the viral RNA receptors TLR3, PKR, MDA5 and RIG-I, the latter of which indirectly senses viral DNA through non-self RNA polymerase III transcripts, showed dampening in downstream signalling of these receptors by HPVs. Many of the genes downregulated in HPV-positive KCs involved components of the antigen presenting pathway, the inflammasome, the production of antivirals, pro-inflammatory and chemotactic cytokines, and components downstream of activated pathogen receptors. Notably, gene and/or protein interaction analysis revealed the downregulation of a network of genes that was strongly interconnected by IL-1β, a crucial cytokine to activate adaptive immunity. In summary, our comprehensive expression profiling approach revealed that HPV16 and 18 coordinate a broad deregulation of the keratinocyte's inflammatory response, and contributes to the understanding of virus persistence

    APOE3, but Not APOE4, Bone Marrow Transplantation Mitigates Behavioral and Pathological Changes in a Mouse Model of Alzheimer Disease

    Get PDF
    Apolipoprotein E4 (APOE4) genotype is the strongest genetic risk factor for late-onset Alzheimer disease and confers a proinflammatory, neurotoxic phenotype to microglia. Here, we tested the hypothesis that bone marrow cell APOE genotype modulates pathological progression in experimental Alzheimer disease. We performed bone marrow transplants (BMT) from green fluorescent protein–expressing human APOE3/3 or APOE4/4 donor mice into lethally irradiated 5-month-old APPswe/PS1ΔE9 mice. Eight months later, APOE4/4 BMT–recipient APPswe/PS1ΔE9 mice had significantly impaired spatial working memory and increased detergent-soluble and plaque Aβ compared with APOE3/3 BMT–recipient APPswe/PS1ΔE9 mice. BMT-derived microglia engraftment was significantly reduced in APOE4/4 recipients, who also had correspondingly less cerebral apoE. Gene expression analysis in cerebral cortex of APOE3/3 BMT recipients showed reduced expression of tumor necrosis factor-α and macrophage migration inhibitory factor (both neurotoxic cytokines) and elevated immunomodulatory IL-10 expression in APOE3/3 recipients compared with those that received APOE4/4 bone marrow. This was not due to detectable APOE-specific differences in expression of microglial major histocompatibility complex class II, C-C chemokine receptor (CCR) type 1, CCR2, CX3C chemokine receptor 1 (CX3CR1), or C5a anaphylatoxin chemotactic receptor (C5aR). Together, these findings suggest that BMT-derived APOE3-expressing cells are superior to those that express APOE4 in their ability to mitigate the behavioral and neuropathological changes in experimental Alzheimer disease
    corecore