564 research outputs found

    Genetic and epigenetic profiling of BRCA1/2 in ovarian tumors reveals additive diagnostic yield and evidence of a genomic BRCA1/2 DNA methylation signature

    Get PDF
    Poly-ADP-ribose-polymerase inhibitor (PARPi) treatment is indicated for advanced-stage ovarian tumors with BRCA1/2 deficiency. The “BRCAness” status is thought to be attributed to a tumor phenotype associated with a specific epigenomic DNA methylation profile. Here, we examined the diagnostic impact of combined BRCA1/2 sequence, copy number, and promoter DNA methylation analysis, and evaluated whether genomic DNA methylation patterns can predict the BRCAness in ovarian tumors. DNA sequencing of 172 human tissue samples of advanced-stage ovarian adenocarcinoma identified 36 samples with a clinically significant tier 1/2 sequence variants (point mutations and in/dels) and 9 samples with a CNV causing a loss of function in BRCA1/2. DNA methylation analysis of the promoter of BRCA1/2 identified promoter hypermethylation of BRCA1 in two mutation-negative samples. Computational modeling of genome-wide methylation markers, measured using Infinium EPIC arrays, resulted in a total accuracy of 0.75, sensitivity: 0.83, specificity: 0.64, positive predictive value: 0.76, negative predictive value: 0.74, and area under the receiver’s operating curve (AUC): 0.77, in classifying tumors harboring a BRCA1/2 defect from the rest. These findings indicate that the assessment of CNV and promoter DNA methylation in BRCA1/2 increases the cumulative diagnostic yield by 10%, compared with the 20% yield achieved by sequence variant analysis alone. Genomic DNA methylation data can partially predict BRCAness in ovarian tumors; however, further investigation in expanded BRCA1/2 cohorts is needed, and the effect of other double strand DNA repair gene defects in these tumors warrants further investigations

    p53 immunohistochemistry in endometrial cancer:clinical and molecular correlates in the PORTEC-3 trial

    Get PDF
    Standard molecular classification of endometrial cancers (EC) is now endorsed by the WHO and identifies p53-abnormal (p53abn) EC as the subgroup with the poorest prognosis and the most likely to benefit from adjuvant chemo(radio)therapy. P53abn EC are POLE wildtype, mismatch repair proficient and show abnormal immunohistochemical (IHC) staining for p53. Correct interpretation of routinely performed p53 IHC has therefore become of paramount importance. We aimed to comprehensively investigate abnormal p53 IHC patterns and their relation to clinicopathological and molecular features. Tumor material of 411 molecularly classified high-risk EC from consenting patients from the PORTEC-3 clinical trial were collected. p53 IHC was successful in 408 EC and was considered abnormal when the tumor showed a mutant expression pattern (including subclonal): overexpression, null or cytoplasmic. The presence of pathogenic mutations was determined by next generation sequencing (NGS). Abnormal p53 expression was observed in 131/408 (32%) tumors. The most common abnormal p53 IHC pattern was overexpression (n = 89, 68%), followed by null (n = 12, 9%) and cytoplasmic (n = 3, 2%). Subclonal abnormal p53 staining was observed in 27 cases (21%), which was frequently but not exclusively, associated with POLE mutations and/or MMRd (n = 22/27; p < 0.001). Agreement between p53 IHC and TP53 NGS was observed in 90.7%, resulting in a sensitivity and specificity of 83.6% and 94.3%, respectively. Excluding POLEmut and MMRd EC, as per the WHO-endorsed algorithm, increased the accuracy to 94.5% with sensitivity and specificity of 95.0% and 94.1%, respectively. Our data shows that awareness of the abnormal p53 IHC patterns are prerequisites for correct EC molecular classification. Subclonal abnormal p53 expression is a strong indicator for POLEmut and/or MMRd EC. No significant differences in clinical outcomes were observed among the abnormal p53 IHC patterns. Our data support use of the WHO-endorsed algorithm and combining the different abnormal p53 IHC patterns into one diagnostic entity (p53abn EC)

    Identification and prioritization of critical success factors in faith-based and non-faith-based organizations’ humanitarian supply chain

    Get PDF
    In the last few decades, an exponential increase in the number of disasters, and their complexity has been reported, which ultimately put much pressure on relief organizations. These organizations cannot usually respond to the disaster on their own, and therefore, all actors involved in relief efforts should have end-to-end synchronization in order to provide relief effectively and efficiently. Consequently, to smoothen the flow of relief operation, a shared understanding of critical success factors in humanitarian supply chain serves as a pre-requisite for successful relief operation. Therefore, any member of the humanitarian supply chain might disrupt this synchronization by neglecting one or several of these critical success factors. However, in this study, we try to investigate how faith-based and non-faith-based relief organizations treat these critical success factors. Moreover, we also try to identify any differences between Islamic and Christian relief organizations in identifying and prioritizing these factors. To achieve the objective of this study, we used a two-stage approach; in the first stage, we collected the critical success factors from existing humanitarian literature. Whereas, in the second stage, using an online questionnaire, we collected data on the importance of selected factors from humanitarian relief organizations from around the world in collaboration with World Association of Non-Governmental Organizations (WANGO). Later, responses were analyzed to answer the research questions using non-parametric Binomial and Wilcoxon Rank-Sum tests. Test results indicate that for RQ1, two but all factors are significant for successful relief operation. For RQ2, we found significant differences for some CSF among faith-based and non-faith-based relief organizations. Similarly for RQ3, we found significant differences for some CSF among Islamic and Christian relief organizations

    Coexisting high-grade glandular and squamous cervical lesions and human papillomavirus infections

    Get PDF
    Contains fulltext : 144469.pdf (publisher's version ) (Closed access)The frequency of high-risk human papillomavirus (hr-HPV) genotypes in patients with adenocarcinoma in situ (ACIS) with coexisting cervical intraepithelial neoplasia (CIN), ACIS without coexisting CIN, and high-grade CIN (CIN II/III) was studied, in order to gain more insight into the relation between hr-HPV infections and the development of coexisting squamous and glandular lesions. The SPF(10) LiPA PCR was used to detect simultaneously 25 different HPV genotypes in biopsies obtained from 90 patients with CIN II/III, 47 patients with ACIS without coexisting CIN, and 49 patients with ACIS and coexisting CIN. hr-HPV was detected in 84 patients (93%) with CIN II/III, 38 patients (81%) with ACIS without CIN, and in 47 patients (96%) with ACIS and coexisting CIN. A total of 13 different hr-HPV genotypes were detected in patients with CIN II/III, and only five in patients with ACIS with/without coexisting CIN. HPV 31, multiple hr-HPV genotypes, and HPV genotypes other than 16, 18, and 45 were significantly more often detected in patients with CIN II/III, while HPV 18 was significantly more often detected in patients with ACIS with/without CIN. There were no significant differences in the frequency of specific hr-HPV genotypes between patients with ACIS with or without coexisting CIN. In conclusion, the frequency of specific hr-HPV genotypes is similar for patients with ACIS without CIN and patients with ACIS and coexisting CIN, but is significantly different for patients with CIN II/III without ACIS. These findings suggest that squamous lesions, coexisting with high-grade glandular lesions, are aetiologically different from squamous lesions without coexisting glandular lesions

    Hydrophilic interaction liquid chromatography (HILIC) in proteomics

    Get PDF
    In proteomics, nanoflow multidimensional chromatography is now the gold standard for the separation of complex mixtures of peptides as generated by in-solution digestion of whole-cell lysates. Ideally, the different stationary phases used in multidimensional chromatography should provide orthogonal separation characteristics. For this reason, the combination of strong cation exchange chromatography (SCX) and reversed-phase (RP) chromatography is the most widely used combination for the separation of peptides. Here, we review the potential of hydrophilic interaction liquid chromatography (HILIC) as a separation tool in the multidimensional separation of peptides in proteomics applications. Recent work has revealed that HILIC may provide an excellent alternative to SCX, possessing several advantages in the area of separation power and targeted analysis of protein post-translational modifications
    • …
    corecore