328 research outputs found

    Real-time forecasts of flood hazard and impact: some UK experiences

    Get PDF
    Major UK floods over the last decade have motivated significant technological and scientific advances in operational flood forecasting and warning. New joint forecasting centres between the national hydrological and meteorological operating agencies have been formed that issue a daily, national Flood Guidance Statement (FGS) to the emergency response community. The FGS is based on a Flood Risk Matrix approach that is a function of potential impact severity and likelihood. It has driven an increased demand for robust, accurate and timely forecast and alert information on fluvial and surface water flooding along with impact assessments. The Grid-to-Grid (G2G) distributed hydrological model has been employed across Britain at a 1km resolution to support the FGS. Novel methods for linking dynamic gridded estimates of river flow and surface runoff with more detailed offline flood risk maps have been developed to obtain real-time probabilistic forecasts of potential impacts, leading to operational trials. Examples of the national-scale G2G application are provided along with case studies of forecast flood impact from (i) an operational Surface Water Flooding (SWF) trial during the Glasgow 2014 Commonwealth Games, (ii) SWF developments under the Natural Hazards Partnership over England & Wales, and (iii) fluvial applications in Scotland

    Effective connectivity reveals right-hemisphere dominance in audiospatial perception: implications for models of spatial neglect

    Get PDF
    Detecting the location of salient sounds in the environment rests on the brain's ability to use differences in sounds arriving at both ears. Functional neuroimaging studies in humans indicate that the left and right auditory hemispaces are coded asymmetrically, with a rightward attentional bias that reflects spatial attention in vision. Neuropsychological observations in patients with spatial neglect have led to the formulation of two competing models: the orientation bias and right-hemisphere dominance models. The orientation bias model posits a symmetrical mapping between one side of the sensorium and the contralateral hemisphere, with mutual inhibition of the ipsilateral hemisphere. The right-hemisphere dominance model introduces a functional asymmetry in the brain's coding of space: the left hemisphere represents the right side, whereas the right hemisphere represents both sides of the sensorium. We used Dynamic Causal Modeling of effective connectivity and Bayesian model comparison to adjudicate between these alternative network architectures, based on human electroencephalographic data acquired during an auditory location oddball paradigm. Our results support a hemispheric asymmetry in a frontoparietal network that conforms to the right-hemisphere dominance model.Weshow that, within this frontoparietal network, forward connectivity increases selectively in the hemisphere contralateral to the side of sensory stimulation. We interpret this finding in light of hierarchical predictive coding as a selective increase in attentional gain, which is mediated by feedforward connections that carry precision-weighted prediction errors during perceptual inference. This finding supports the disconnection hypothesis of unilateral neglect and has implications for theories of its etiology

    Passive parametric macromodeling by using Sylvester state-space realizations

    Get PDF
    A judicious choice of the state-space realization is required in order to account for the assumed smoothness of the state-space matrices with respect to the design parameters. The direct parameterization of poles and residues may be not appropriate, due to their possible non-smooth behavior with respect to design parameters. This is avoided in the proposed technique, by converting the pole-residue description to a Sylvester description which is computed for each root macromodel. This technique is used in combination with suitable parameterizing schemes for interpolating a set of state-space matrices, and hence the poles and residues indirectly, in order to build accurate parametric macromodels. The key features of the present approach are first the choice of a proper pivot matrix and second, finding a well-conditioned solution of a Sylvester equation. Stability and passivity are guaranteed by construction over the design space of interest. Pertinent numerical examples validate the proposed Sylvester technique for parametric macromodeling

    Dynamic Energy Management

    Full text link
    We present a unified method, based on convex optimization, for managing the power produced and consumed by a network of devices over time. We start with the simple setting of optimizing power flows in a static network, and then proceed to the case of optimizing dynamic power flows, i.e., power flows that change with time over a horizon. We leverage this to develop a real-time control strategy, model predictive control, which at each time step solves a dynamic power flow optimization problem, using forecasts of future quantities such as demands, capacities, or prices, to choose the current power flow values. Finally, we consider a useful extension of model predictive control that explicitly accounts for uncertainty in the forecasts. We mirror our framework with an object-oriented software implementation, an open-source Python library for planning and controlling power flows at any scale. We demonstrate our method with various examples. Appendices give more detail about the package, and describe some basic but very effective methods for constructing forecasts from historical data.Comment: 63 pages, 15 figures, accompanying open source librar

    A Quadratic Programming Approach to Quasi-Static Whole-Body Manipulation

    Get PDF
    This paper introduces a local motion planning method for robotic systems with manipulating limbs, moving bases (legged or wheeled), and stance stability constraints arising from the presence of gravity. We formulate the problem of selecting local motions as a linearly constrained quadratic program (QP), that can be solved efficiently. The solution to this QP is a tuple of locally optimal joint velocities. By using these velocities to step towards a goal, both a path and an inverse-kinematic solution to the goal are obtained. This formulation can be used directly for real-time control, or as a local motion planner to connect waypoints. This method is particularly useful for high-degree-of-freedom mobile robotic systems, as the QP solution scales well with the number of joints. We also show how a number of practically important geometric constraints (collision avoidance, mechanism self-collision avoidance, gaze direction, etc.) can be readily incorporated into either the constraint or objective parts of the formulation. Additionally, motion of the base, a particular joint, or a particular link can be encouraged/discouraged as desired. We summarize the important kinematic variables of the formulation, including the stance Jacobian, the reach Jacobian, and a center of mass Jacobian. The method is easily extended to provide sparse solutions, where the fewest number of joints are moved, by iteration using Tibshirani’s method to accommodate an l_1 regularizer. The approach is validated and demonstrated on SURROGATE, a mobile robot with a TALON base, a 7 DOF serial-revolute torso, and two 7 DOF modular arms developed at JPL/Caltech

    Visual spatial attention has opposite effects on bidirectional plasticity in the human motor cortex

    Get PDF
    Long-term potentiation (LTP) and long-term depression (LTD) are key mechanisms of synaptic plasticity that are thought to act in concert to shape neural connections. Here we investigated the influence of visual spatial attention on LTP-like and LTD-like plasticity in thehumanmotor cortex. Plasticity was induced using paired associative stimulation (PAS), which involves repeated pairing of peripheral nerve stimulation and transcranial magnetic stimulation to alter functional responses in the thumb area of the primary motor cortex. PAS-induced changes in cortical excitability were assessed using motor-evoked potentials. During plasticity induction, participants directed their attention to one of two visual stimulus streams located adjacent to each hand. When participants attended to visual stimuli located near the left thumb, which was targeted by PAS, LTP-like increases in excitability were significantly enhanced, and LTD-like decreases in excitability reduced, relative to when they attended instead to stimuli located near the right thumb. These differential effects on (bidirectional) LTP-like and LTD-like plasticity suggest that voluntary visual attention can exert an important influence on the functional organization of the motor cortex. Specifically, attention acts to both enhance the strengthening and suppress the weakening of neural connections representing events that fall within the focus of attention

    Negative emotional experiences during navigation enhance parahippocampal activity during recall of place information

    Get PDF
    It is known that the parahippocampal cortex is involved in object-place associations in spatial learning, but it remains unknown whether activity within this region is modulated by affective signals during navigation. Here we used fMRI to measure the neural consequences of emotional experiences on place memory during navigation. A day before scanning, participants undertook an active object location memory task within a virtual house in which each room was associated with a different schedule of task-irrelevant emotional events. The events varied in valence (positive, negative, or neutral) and in their rate of occurrence (intermittent vs. constant). On a subsequent day, we measured neural activity while participants were shown static images of the previously learned virtual environment, now in the absence of any affective stimuli. Our results showed that parahippocampal activity was significantly enhanced bilaterally when participants viewed images of a room in which they had previously encountered negatively arousing events. We conclude that such automatic enhancement of place representations by aversive emotional events serves as an important adaptive mechanism for avoiding future threats

    Influence of hand position on the near-effect in 3D attention

    Get PDF
    Voluntary reorienting of attention in real depth situations is characterized by an attentional bias to locations near the viewer once attention is deployed to a spatially cued object in depth. Previously this effect (initially referred to as the ‘near-effect’) was attributed to access of a 3D viewer-centred spatial representation for guiding attention in 3D space. The aim of this study was to investigate whether the near-bias could have been associated with the position of the response-hand, always near the viewer in previous studies investigating endogenous attentional shifts in real depth. In Experiment 1, the response-hand was placed at either the near or far target depth in a depth cueing task. Placing the response-hand at the far target depth abolished the near-effect, but failed to bias spatial attention to the far location. Experiment 2 showed that the response-hand effect was not modulated by the presence of an additional passive hand, whereas Experiment 3 confirmed that attentional prioritization of the passive hand was not masked by the influence of the responding hand on spatial attention in Experiment 2. The pattern of results is most consistent with the idea that response preparation can modulate spatial attention within a 3D viewer-centred spatial representation

    Neurochemical enhancement of conscious error awareness

    Get PDF
    How the brain monitors ongoing behavior for performance errors is a central question of cognitive neuroscience. Diminished awareness of performance errors limits the extent to which humans engage in corrective behavior and has been linked to loss of insight in a number of psychiatric syndromes (e.g., attention deficit hyperactivity disorder, drug addiction). These conditions share alterations in monoamine signaling that may influence the neural mechanisms underlying error processing, but our understanding of the neurochemical drivers of these processes is limited.Weconducted a randomized, double-blind, placebo-controlled, cross-over design of the influence of methylphenidate, atomoxetine, and citalopram on error awareness in 27 healthy participants. The error awareness task, a go/no-go response inhibition paradigm, was administered to assess the influence of monoaminergic agents on performance errors during fMRI data acquisition. A single dose of methylphenidate, but not atomoxetine or citalopram, significantly improved the ability of healthy volunteers to consciously detect performance errors. Furthermore, this behavioral effect was associated with a strengthening of activation differences in the dorsal anterior cingulate cortex and inferior parietal lobe during the methylphenidate condition for errors made with versus without awareness. Our results have implications for the understanding of the neurochemical underpinnings of performance monitoring and for the pharmacological treatment of a range of disparate clinical conditions that are marked by poor awareness of errors

    Synaesthesia: a distinct entity that is an emergent feature of adaptive neurocognitive differences

    Get PDF
    In this article, I argue that synaesthesia is not on a continuum with neurotypical cognition. Synaesthesia is special: its phenomenology is different; it has distinct causal mechanisms; and is likely to be associated with a distinct neurocognitive profile. However, not all synaesthetes are the same, and there are quantifiable differences between them. In particular, the number of types of synaesthesia that a person possesses is a hitherto underappreciated variable that predicts cognitive differences along a number of dimensions (mental imagery, sensory sensitivity, attention to detail). Together with enhanced memory, this may constitute a common core of abilities that may go some way to explaining why synaesthesia might have evolved. I argue that the direct benefits of synaesthesia are generally limited (i.e. the synaesthetic associations do not convey novel information about the world) but, nevertheless, synaesthesia may develop due to other adaptive functions (e.g. perceptual ability, memory) that necessitate changes to design features of the brain. The article concludes by suggesting that synaesthesia forces us to reconsider what we mean by a ‘normal’ mind/brain. There may be multiple ‘normal’ neurodevelopmental trajectories that can sculpt very different ways of experiencing the world, of which synaesthesia is but one. This article is part of a discussion meeting issue ‘Bridging senses: novel insights from synaesthesia’
    • …
    corecore